Metamath Proof Explorer


Theorem gbpart8

Description: The Goldbach partition of 8. (Contributed by AV, 20-Jul-2020)

Ref Expression
Assertion gbpart8 8 = ( 3 + 5 )

Proof

Step Hyp Ref Expression
1 5cn 5 ∈ ℂ
2 3cn 3 ∈ ℂ
3 5p3e8 ( 5 + 3 ) = 8
4 1 2 3 addcomli ( 3 + 5 ) = 8
5 4 eqcomi 8 = ( 3 + 5 )