Step |
Hyp |
Ref |
Expression |
1 |
|
0z |
⊢ 0 ∈ ℤ |
2 |
|
gcdval |
⊢ ( ( 0 ∈ ℤ ∧ 0 ∈ ℤ ) → ( 0 gcd 0 ) = if ( ( 0 = 0 ∧ 0 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 0 ∧ 𝑛 ∥ 0 ) } , ℝ , < ) ) ) |
3 |
1 1 2
|
mp2an |
⊢ ( 0 gcd 0 ) = if ( ( 0 = 0 ∧ 0 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 0 ∧ 𝑛 ∥ 0 ) } , ℝ , < ) ) |
4 |
|
eqid |
⊢ 0 = 0 |
5 |
|
iftrue |
⊢ ( ( 0 = 0 ∧ 0 = 0 ) → if ( ( 0 = 0 ∧ 0 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 0 ∧ 𝑛 ∥ 0 ) } , ℝ , < ) ) = 0 ) |
6 |
4 4 5
|
mp2an |
⊢ if ( ( 0 = 0 ∧ 0 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 0 ∧ 𝑛 ∥ 0 ) } , ℝ , < ) ) = 0 |
7 |
3 6
|
eqtri |
⊢ ( 0 gcd 0 ) = 0 |