Step |
Hyp |
Ref |
Expression |
1 |
|
1z |
⊢ 1 ∈ ℤ |
2 |
|
gcddvds |
⊢ ( ( 𝑀 ∈ ℤ ∧ 1 ∈ ℤ ) → ( ( 𝑀 gcd 1 ) ∥ 𝑀 ∧ ( 𝑀 gcd 1 ) ∥ 1 ) ) |
3 |
1 2
|
mpan2 |
⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 gcd 1 ) ∥ 𝑀 ∧ ( 𝑀 gcd 1 ) ∥ 1 ) ) |
4 |
3
|
simprd |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 gcd 1 ) ∥ 1 ) |
5 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
6 |
|
simpr |
⊢ ( ( 𝑀 = 0 ∧ 1 = 0 ) → 1 = 0 ) |
7 |
6
|
necon3ai |
⊢ ( 1 ≠ 0 → ¬ ( 𝑀 = 0 ∧ 1 = 0 ) ) |
8 |
5 7
|
ax-mp |
⊢ ¬ ( 𝑀 = 0 ∧ 1 = 0 ) |
9 |
|
gcdn0cl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 1 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 1 = 0 ) ) → ( 𝑀 gcd 1 ) ∈ ℕ ) |
10 |
8 9
|
mpan2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 𝑀 gcd 1 ) ∈ ℕ ) |
11 |
1 10
|
mpan2 |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 gcd 1 ) ∈ ℕ ) |
12 |
11
|
nnzd |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 gcd 1 ) ∈ ℤ ) |
13 |
|
1nn |
⊢ 1 ∈ ℕ |
14 |
|
dvdsle |
⊢ ( ( ( 𝑀 gcd 1 ) ∈ ℤ ∧ 1 ∈ ℕ ) → ( ( 𝑀 gcd 1 ) ∥ 1 → ( 𝑀 gcd 1 ) ≤ 1 ) ) |
15 |
12 13 14
|
sylancl |
⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 gcd 1 ) ∥ 1 → ( 𝑀 gcd 1 ) ≤ 1 ) ) |
16 |
4 15
|
mpd |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 gcd 1 ) ≤ 1 ) |
17 |
|
nnle1eq1 |
⊢ ( ( 𝑀 gcd 1 ) ∈ ℕ → ( ( 𝑀 gcd 1 ) ≤ 1 ↔ ( 𝑀 gcd 1 ) = 1 ) ) |
18 |
11 17
|
syl |
⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 gcd 1 ) ≤ 1 ↔ ( 𝑀 gcd 1 ) = 1 ) ) |
19 |
16 18
|
mpbid |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 gcd 1 ) = 1 ) |