| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gcdabs1 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( abs ‘ 𝑀 )  gcd  𝑁 )  =  ( 𝑀  gcd  𝑁 ) ) | 
						
							| 2 | 1 | ancoms | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( ( abs ‘ 𝑀 )  gcd  𝑁 )  =  ( 𝑀  gcd  𝑁 ) ) | 
						
							| 3 |  | zabscl | ⊢ ( 𝑀  ∈  ℤ  →  ( abs ‘ 𝑀 )  ∈  ℤ ) | 
						
							| 4 |  | gcdcom | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ( abs ‘ 𝑀 )  ∈  ℤ )  →  ( 𝑁  gcd  ( abs ‘ 𝑀 ) )  =  ( ( abs ‘ 𝑀 )  gcd  𝑁 ) ) | 
						
							| 5 | 3 4 | sylan2 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( 𝑁  gcd  ( abs ‘ 𝑀 ) )  =  ( ( abs ‘ 𝑀 )  gcd  𝑁 ) ) | 
						
							| 6 |  | gcdcom | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( 𝑁  gcd  𝑀 )  =  ( 𝑀  gcd  𝑁 ) ) | 
						
							| 7 | 2 5 6 | 3eqtr4d | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( 𝑁  gcd  ( abs ‘ 𝑀 ) )  =  ( 𝑁  gcd  𝑀 ) ) |