Step |
Hyp |
Ref |
Expression |
1 |
|
gcdabs1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) gcd 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) |
2 |
1
|
ancoms |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) gcd 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) |
3 |
|
zabscl |
⊢ ( 𝑀 ∈ ℤ → ( abs ‘ 𝑀 ) ∈ ℤ ) |
4 |
|
gcdcom |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( abs ‘ 𝑀 ) ∈ ℤ ) → ( 𝑁 gcd ( abs ‘ 𝑀 ) ) = ( ( abs ‘ 𝑀 ) gcd 𝑁 ) ) |
5 |
3 4
|
sylan2 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 gcd ( abs ‘ 𝑀 ) ) = ( ( abs ‘ 𝑀 ) gcd 𝑁 ) ) |
6 |
|
gcdcom |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 gcd 𝑀 ) = ( 𝑀 gcd 𝑁 ) ) |
7 |
2 5 6
|
3eqtr4d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 gcd ( abs ‘ 𝑀 ) ) = ( 𝑁 gcd 𝑀 ) ) |