Step |
Hyp |
Ref |
Expression |
1 |
|
zre |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) |
2 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
3 |
|
absor |
⊢ ( 𝑀 ∈ ℝ → ( ( abs ‘ 𝑀 ) = 𝑀 ∨ ( abs ‘ 𝑀 ) = - 𝑀 ) ) |
4 |
|
absor |
⊢ ( 𝑁 ∈ ℝ → ( ( abs ‘ 𝑁 ) = 𝑁 ∨ ( abs ‘ 𝑁 ) = - 𝑁 ) ) |
5 |
3 4
|
anim12i |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( ( abs ‘ 𝑀 ) = 𝑀 ∨ ( abs ‘ 𝑀 ) = - 𝑀 ) ∧ ( ( abs ‘ 𝑁 ) = 𝑁 ∨ ( abs ‘ 𝑁 ) = - 𝑁 ) ) ) |
6 |
1 2 5
|
syl2an |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( abs ‘ 𝑀 ) = 𝑀 ∨ ( abs ‘ 𝑀 ) = - 𝑀 ) ∧ ( ( abs ‘ 𝑁 ) = 𝑁 ∨ ( abs ‘ 𝑁 ) = - 𝑁 ) ) ) |
7 |
|
oveq12 |
⊢ ( ( ( abs ‘ 𝑀 ) = 𝑀 ∧ ( abs ‘ 𝑁 ) = 𝑁 ) → ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) = ( 𝑀 gcd 𝑁 ) ) |
8 |
7
|
a1i |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( abs ‘ 𝑀 ) = 𝑀 ∧ ( abs ‘ 𝑁 ) = 𝑁 ) → ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) = ( 𝑀 gcd 𝑁 ) ) ) |
9 |
|
oveq12 |
⊢ ( ( ( abs ‘ 𝑀 ) = - 𝑀 ∧ ( abs ‘ 𝑁 ) = 𝑁 ) → ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) = ( - 𝑀 gcd 𝑁 ) ) |
10 |
|
neggcd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( - 𝑀 gcd 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) |
11 |
9 10
|
sylan9eqr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( abs ‘ 𝑀 ) = - 𝑀 ∧ ( abs ‘ 𝑁 ) = 𝑁 ) ) → ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) = ( 𝑀 gcd 𝑁 ) ) |
12 |
11
|
ex |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( abs ‘ 𝑀 ) = - 𝑀 ∧ ( abs ‘ 𝑁 ) = 𝑁 ) → ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) = ( 𝑀 gcd 𝑁 ) ) ) |
13 |
|
oveq12 |
⊢ ( ( ( abs ‘ 𝑀 ) = 𝑀 ∧ ( abs ‘ 𝑁 ) = - 𝑁 ) → ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) = ( 𝑀 gcd - 𝑁 ) ) |
14 |
|
gcdneg |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd - 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) |
15 |
13 14
|
sylan9eqr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( abs ‘ 𝑀 ) = 𝑀 ∧ ( abs ‘ 𝑁 ) = - 𝑁 ) ) → ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) = ( 𝑀 gcd 𝑁 ) ) |
16 |
15
|
ex |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( abs ‘ 𝑀 ) = 𝑀 ∧ ( abs ‘ 𝑁 ) = - 𝑁 ) → ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) = ( 𝑀 gcd 𝑁 ) ) ) |
17 |
|
oveq12 |
⊢ ( ( ( abs ‘ 𝑀 ) = - 𝑀 ∧ ( abs ‘ 𝑁 ) = - 𝑁 ) → ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) = ( - 𝑀 gcd - 𝑁 ) ) |
18 |
|
znegcl |
⊢ ( 𝑀 ∈ ℤ → - 𝑀 ∈ ℤ ) |
19 |
|
gcdneg |
⊢ ( ( - 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( - 𝑀 gcd - 𝑁 ) = ( - 𝑀 gcd 𝑁 ) ) |
20 |
18 19
|
sylan |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( - 𝑀 gcd - 𝑁 ) = ( - 𝑀 gcd 𝑁 ) ) |
21 |
20 10
|
eqtrd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( - 𝑀 gcd - 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) |
22 |
17 21
|
sylan9eqr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( abs ‘ 𝑀 ) = - 𝑀 ∧ ( abs ‘ 𝑁 ) = - 𝑁 ) ) → ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) = ( 𝑀 gcd 𝑁 ) ) |
23 |
22
|
ex |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( abs ‘ 𝑀 ) = - 𝑀 ∧ ( abs ‘ 𝑁 ) = - 𝑁 ) → ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) = ( 𝑀 gcd 𝑁 ) ) ) |
24 |
8 12 16 23
|
ccased |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( ( abs ‘ 𝑀 ) = 𝑀 ∨ ( abs ‘ 𝑀 ) = - 𝑀 ) ∧ ( ( abs ‘ 𝑁 ) = 𝑁 ∨ ( abs ‘ 𝑁 ) = - 𝑁 ) ) → ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) = ( 𝑀 gcd 𝑁 ) ) ) |
25 |
6 24
|
mpd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) = ( 𝑀 gcd 𝑁 ) ) |