| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 2 |  | gcdaddm | ⊢ ( ( 1  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  gcd  𝑁 )  =  ( 𝑀  gcd  ( 𝑁  +  ( 1  ·  𝑀 ) ) ) ) | 
						
							| 3 | 1 2 | mp3an1 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  gcd  𝑁 )  =  ( 𝑀  gcd  ( 𝑁  +  ( 1  ·  𝑀 ) ) ) ) | 
						
							| 4 |  | zcn | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ℂ ) | 
						
							| 5 |  | mullid | ⊢ ( 𝑀  ∈  ℂ  →  ( 1  ·  𝑀 )  =  𝑀 ) | 
						
							| 6 | 5 | oveq2d | ⊢ ( 𝑀  ∈  ℂ  →  ( 𝑁  +  ( 1  ·  𝑀 ) )  =  ( 𝑁  +  𝑀 ) ) | 
						
							| 7 | 6 | oveq2d | ⊢ ( 𝑀  ∈  ℂ  →  ( 𝑀  gcd  ( 𝑁  +  ( 1  ·  𝑀 ) ) )  =  ( 𝑀  gcd  ( 𝑁  +  𝑀 ) ) ) | 
						
							| 8 | 4 7 | syl | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑀  gcd  ( 𝑁  +  ( 1  ·  𝑀 ) ) )  =  ( 𝑀  gcd  ( 𝑁  +  𝑀 ) ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  gcd  ( 𝑁  +  ( 1  ·  𝑀 ) ) )  =  ( 𝑀  gcd  ( 𝑁  +  𝑀 ) ) ) | 
						
							| 10 | 3 9 | eqtrd | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  gcd  𝑁 )  =  ( 𝑀  gcd  ( 𝑁  +  𝑀 ) ) ) |