Step |
Hyp |
Ref |
Expression |
1 |
|
anass |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 0 ) ∧ 𝑃 = 0 ) ↔ ( 𝑁 = 0 ∧ ( 𝑀 = 0 ∧ 𝑃 = 0 ) ) ) |
2 |
|
anass |
⊢ ( ( ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) ↔ ( 𝑥 ∥ 𝑁 ∧ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃 ) ) ) |
3 |
2
|
rabbii |
⊢ { 𝑥 ∈ ℤ ∣ ( ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } = { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃 ) ) } |
4 |
3
|
supeq1i |
⊢ sup ( { 𝑥 ∈ ℤ ∣ ( ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } , ℝ , < ) = sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃 ) ) } , ℝ , < ) |
5 |
1 4
|
ifbieq2i |
⊢ if ( ( ( 𝑁 = 0 ∧ 𝑀 = 0 ) ∧ 𝑃 = 0 ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } , ℝ , < ) ) = if ( ( 𝑁 = 0 ∧ ( 𝑀 = 0 ∧ 𝑃 = 0 ) ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃 ) ) } , ℝ , < ) ) |
6 |
|
gcdcl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 gcd 𝑀 ) ∈ ℕ0 ) |
7 |
6
|
3adant3 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑁 gcd 𝑀 ) ∈ ℕ0 ) |
8 |
7
|
nn0zd |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑁 gcd 𝑀 ) ∈ ℤ ) |
9 |
|
simp3 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → 𝑃 ∈ ℤ ) |
10 |
|
gcdval |
⊢ ( ( ( 𝑁 gcd 𝑀 ) ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑁 gcd 𝑀 ) gcd 𝑃 ) = if ( ( ( 𝑁 gcd 𝑀 ) = 0 ∧ 𝑃 = 0 ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ ( 𝑁 gcd 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } , ℝ , < ) ) ) |
11 |
8 9 10
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑁 gcd 𝑀 ) gcd 𝑃 ) = if ( ( ( 𝑁 gcd 𝑀 ) = 0 ∧ 𝑃 = 0 ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ ( 𝑁 gcd 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } , ℝ , < ) ) ) |
12 |
|
gcdeq0 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑁 gcd 𝑀 ) = 0 ↔ ( 𝑁 = 0 ∧ 𝑀 = 0 ) ) ) |
13 |
12
|
3adant3 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑁 gcd 𝑀 ) = 0 ↔ ( 𝑁 = 0 ∧ 𝑀 = 0 ) ) ) |
14 |
13
|
anbi1d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( ( 𝑁 gcd 𝑀 ) = 0 ∧ 𝑃 = 0 ) ↔ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ) ∧ 𝑃 = 0 ) ) ) |
15 |
14
|
bicomd |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( ( 𝑁 = 0 ∧ 𝑀 = 0 ) ∧ 𝑃 = 0 ) ↔ ( ( 𝑁 gcd 𝑀 ) = 0 ∧ 𝑃 = 0 ) ) ) |
16 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → 𝑥 ∈ ℤ ) |
17 |
|
simpl1 |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → 𝑁 ∈ ℤ ) |
18 |
|
simpl2 |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → 𝑀 ∈ ℤ ) |
19 |
|
dvdsgcdb |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀 ) ↔ 𝑥 ∥ ( 𝑁 gcd 𝑀 ) ) ) |
20 |
16 17 18 19
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀 ) ↔ 𝑥 ∥ ( 𝑁 gcd 𝑀 ) ) ) |
21 |
20
|
anbi1d |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → ( ( ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) ↔ ( 𝑥 ∥ ( 𝑁 gcd 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) ) ) |
22 |
21
|
rabbidva |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → { 𝑥 ∈ ℤ ∣ ( ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } = { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ ( 𝑁 gcd 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } ) |
23 |
22
|
supeq1d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → sup ( { 𝑥 ∈ ℤ ∣ ( ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } , ℝ , < ) = sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ ( 𝑁 gcd 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } , ℝ , < ) ) |
24 |
15 23
|
ifbieq2d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → if ( ( ( 𝑁 = 0 ∧ 𝑀 = 0 ) ∧ 𝑃 = 0 ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } , ℝ , < ) ) = if ( ( ( 𝑁 gcd 𝑀 ) = 0 ∧ 𝑃 = 0 ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ ( 𝑁 gcd 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } , ℝ , < ) ) ) |
25 |
11 24
|
eqtr4d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑁 gcd 𝑀 ) gcd 𝑃 ) = if ( ( ( 𝑁 = 0 ∧ 𝑀 = 0 ) ∧ 𝑃 = 0 ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } , ℝ , < ) ) ) |
26 |
|
simp1 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → 𝑁 ∈ ℤ ) |
27 |
|
gcdcl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑀 gcd 𝑃 ) ∈ ℕ0 ) |
28 |
27
|
3adant1 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑀 gcd 𝑃 ) ∈ ℕ0 ) |
29 |
28
|
nn0zd |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑀 gcd 𝑃 ) ∈ ℤ ) |
30 |
|
gcdval |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑀 gcd 𝑃 ) ∈ ℤ ) → ( 𝑁 gcd ( 𝑀 gcd 𝑃 ) ) = if ( ( 𝑁 = 0 ∧ ( 𝑀 gcd 𝑃 ) = 0 ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ ( 𝑀 gcd 𝑃 ) ) } , ℝ , < ) ) ) |
31 |
26 29 30
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑁 gcd ( 𝑀 gcd 𝑃 ) ) = if ( ( 𝑁 = 0 ∧ ( 𝑀 gcd 𝑃 ) = 0 ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ ( 𝑀 gcd 𝑃 ) ) } , ℝ , < ) ) ) |
32 |
|
gcdeq0 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑀 gcd 𝑃 ) = 0 ↔ ( 𝑀 = 0 ∧ 𝑃 = 0 ) ) ) |
33 |
32
|
3adant1 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑀 gcd 𝑃 ) = 0 ↔ ( 𝑀 = 0 ∧ 𝑃 = 0 ) ) ) |
34 |
33
|
anbi2d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑁 = 0 ∧ ( 𝑀 gcd 𝑃 ) = 0 ) ↔ ( 𝑁 = 0 ∧ ( 𝑀 = 0 ∧ 𝑃 = 0 ) ) ) ) |
35 |
34
|
bicomd |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑁 = 0 ∧ ( 𝑀 = 0 ∧ 𝑃 = 0 ) ) ↔ ( 𝑁 = 0 ∧ ( 𝑀 gcd 𝑃 ) = 0 ) ) ) |
36 |
|
simpl3 |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → 𝑃 ∈ ℤ ) |
37 |
|
dvdsgcdb |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃 ) ↔ 𝑥 ∥ ( 𝑀 gcd 𝑃 ) ) ) |
38 |
16 18 36 37
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃 ) ↔ 𝑥 ∥ ( 𝑀 gcd 𝑃 ) ) ) |
39 |
38
|
anbi2d |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 ∥ 𝑁 ∧ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃 ) ) ↔ ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ ( 𝑀 gcd 𝑃 ) ) ) ) |
40 |
39
|
rabbidva |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃 ) ) } = { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ ( 𝑀 gcd 𝑃 ) ) } ) |
41 |
40
|
supeq1d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃 ) ) } , ℝ , < ) = sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ ( 𝑀 gcd 𝑃 ) ) } , ℝ , < ) ) |
42 |
35 41
|
ifbieq2d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → if ( ( 𝑁 = 0 ∧ ( 𝑀 = 0 ∧ 𝑃 = 0 ) ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃 ) ) } , ℝ , < ) ) = if ( ( 𝑁 = 0 ∧ ( 𝑀 gcd 𝑃 ) = 0 ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ ( 𝑀 gcd 𝑃 ) ) } , ℝ , < ) ) ) |
43 |
31 42
|
eqtr4d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑁 gcd ( 𝑀 gcd 𝑃 ) ) = if ( ( 𝑁 = 0 ∧ ( 𝑀 = 0 ∧ 𝑃 = 0 ) ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃 ) ) } , ℝ , < ) ) ) |
44 |
5 25 43
|
3eqtr4a |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑁 gcd 𝑀 ) gcd 𝑃 ) = ( 𝑁 gcd ( 𝑀 gcd 𝑃 ) ) ) |