| Step |
Hyp |
Ref |
Expression |
| 1 |
|
anass |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 0 ) ∧ 𝑃 = 0 ) ↔ ( 𝑁 = 0 ∧ ( 𝑀 = 0 ∧ 𝑃 = 0 ) ) ) |
| 2 |
|
anass |
⊢ ( ( ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) ↔ ( 𝑥 ∥ 𝑁 ∧ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃 ) ) ) |
| 3 |
2
|
rabbii |
⊢ { 𝑥 ∈ ℤ ∣ ( ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } = { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃 ) ) } |
| 4 |
3
|
supeq1i |
⊢ sup ( { 𝑥 ∈ ℤ ∣ ( ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } , ℝ , < ) = sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃 ) ) } , ℝ , < ) |
| 5 |
1 4
|
ifbieq2i |
⊢ if ( ( ( 𝑁 = 0 ∧ 𝑀 = 0 ) ∧ 𝑃 = 0 ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } , ℝ , < ) ) = if ( ( 𝑁 = 0 ∧ ( 𝑀 = 0 ∧ 𝑃 = 0 ) ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃 ) ) } , ℝ , < ) ) |
| 6 |
|
gcdcl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 gcd 𝑀 ) ∈ ℕ0 ) |
| 7 |
6
|
3adant3 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑁 gcd 𝑀 ) ∈ ℕ0 ) |
| 8 |
7
|
nn0zd |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑁 gcd 𝑀 ) ∈ ℤ ) |
| 9 |
|
simp3 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → 𝑃 ∈ ℤ ) |
| 10 |
|
gcdval |
⊢ ( ( ( 𝑁 gcd 𝑀 ) ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑁 gcd 𝑀 ) gcd 𝑃 ) = if ( ( ( 𝑁 gcd 𝑀 ) = 0 ∧ 𝑃 = 0 ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ ( 𝑁 gcd 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } , ℝ , < ) ) ) |
| 11 |
8 9 10
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑁 gcd 𝑀 ) gcd 𝑃 ) = if ( ( ( 𝑁 gcd 𝑀 ) = 0 ∧ 𝑃 = 0 ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ ( 𝑁 gcd 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } , ℝ , < ) ) ) |
| 12 |
|
gcdeq0 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑁 gcd 𝑀 ) = 0 ↔ ( 𝑁 = 0 ∧ 𝑀 = 0 ) ) ) |
| 13 |
12
|
3adant3 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑁 gcd 𝑀 ) = 0 ↔ ( 𝑁 = 0 ∧ 𝑀 = 0 ) ) ) |
| 14 |
13
|
anbi1d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( ( 𝑁 gcd 𝑀 ) = 0 ∧ 𝑃 = 0 ) ↔ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ) ∧ 𝑃 = 0 ) ) ) |
| 15 |
14
|
bicomd |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( ( 𝑁 = 0 ∧ 𝑀 = 0 ) ∧ 𝑃 = 0 ) ↔ ( ( 𝑁 gcd 𝑀 ) = 0 ∧ 𝑃 = 0 ) ) ) |
| 16 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → 𝑥 ∈ ℤ ) |
| 17 |
|
simpl1 |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → 𝑁 ∈ ℤ ) |
| 18 |
|
simpl2 |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → 𝑀 ∈ ℤ ) |
| 19 |
|
dvdsgcdb |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀 ) ↔ 𝑥 ∥ ( 𝑁 gcd 𝑀 ) ) ) |
| 20 |
16 17 18 19
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀 ) ↔ 𝑥 ∥ ( 𝑁 gcd 𝑀 ) ) ) |
| 21 |
20
|
anbi1d |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → ( ( ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) ↔ ( 𝑥 ∥ ( 𝑁 gcd 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) ) ) |
| 22 |
21
|
rabbidva |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → { 𝑥 ∈ ℤ ∣ ( ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } = { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ ( 𝑁 gcd 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } ) |
| 23 |
22
|
supeq1d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → sup ( { 𝑥 ∈ ℤ ∣ ( ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } , ℝ , < ) = sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ ( 𝑁 gcd 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } , ℝ , < ) ) |
| 24 |
15 23
|
ifbieq2d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → if ( ( ( 𝑁 = 0 ∧ 𝑀 = 0 ) ∧ 𝑃 = 0 ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } , ℝ , < ) ) = if ( ( ( 𝑁 gcd 𝑀 ) = 0 ∧ 𝑃 = 0 ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ ( 𝑁 gcd 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } , ℝ , < ) ) ) |
| 25 |
11 24
|
eqtr4d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑁 gcd 𝑀 ) gcd 𝑃 ) = if ( ( ( 𝑁 = 0 ∧ 𝑀 = 0 ) ∧ 𝑃 = 0 ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } , ℝ , < ) ) ) |
| 26 |
|
simp1 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → 𝑁 ∈ ℤ ) |
| 27 |
|
gcdcl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑀 gcd 𝑃 ) ∈ ℕ0 ) |
| 28 |
27
|
3adant1 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑀 gcd 𝑃 ) ∈ ℕ0 ) |
| 29 |
28
|
nn0zd |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑀 gcd 𝑃 ) ∈ ℤ ) |
| 30 |
|
gcdval |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑀 gcd 𝑃 ) ∈ ℤ ) → ( 𝑁 gcd ( 𝑀 gcd 𝑃 ) ) = if ( ( 𝑁 = 0 ∧ ( 𝑀 gcd 𝑃 ) = 0 ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ ( 𝑀 gcd 𝑃 ) ) } , ℝ , < ) ) ) |
| 31 |
26 29 30
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑁 gcd ( 𝑀 gcd 𝑃 ) ) = if ( ( 𝑁 = 0 ∧ ( 𝑀 gcd 𝑃 ) = 0 ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ ( 𝑀 gcd 𝑃 ) ) } , ℝ , < ) ) ) |
| 32 |
|
gcdeq0 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑀 gcd 𝑃 ) = 0 ↔ ( 𝑀 = 0 ∧ 𝑃 = 0 ) ) ) |
| 33 |
32
|
3adant1 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑀 gcd 𝑃 ) = 0 ↔ ( 𝑀 = 0 ∧ 𝑃 = 0 ) ) ) |
| 34 |
33
|
anbi2d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑁 = 0 ∧ ( 𝑀 gcd 𝑃 ) = 0 ) ↔ ( 𝑁 = 0 ∧ ( 𝑀 = 0 ∧ 𝑃 = 0 ) ) ) ) |
| 35 |
34
|
bicomd |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑁 = 0 ∧ ( 𝑀 = 0 ∧ 𝑃 = 0 ) ) ↔ ( 𝑁 = 0 ∧ ( 𝑀 gcd 𝑃 ) = 0 ) ) ) |
| 36 |
|
simpl3 |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → 𝑃 ∈ ℤ ) |
| 37 |
|
dvdsgcdb |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃 ) ↔ 𝑥 ∥ ( 𝑀 gcd 𝑃 ) ) ) |
| 38 |
16 18 36 37
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃 ) ↔ 𝑥 ∥ ( 𝑀 gcd 𝑃 ) ) ) |
| 39 |
38
|
anbi2d |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 ∥ 𝑁 ∧ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃 ) ) ↔ ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ ( 𝑀 gcd 𝑃 ) ) ) ) |
| 40 |
39
|
rabbidva |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃 ) ) } = { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ ( 𝑀 gcd 𝑃 ) ) } ) |
| 41 |
40
|
supeq1d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃 ) ) } , ℝ , < ) = sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ ( 𝑀 gcd 𝑃 ) ) } , ℝ , < ) ) |
| 42 |
35 41
|
ifbieq2d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → if ( ( 𝑁 = 0 ∧ ( 𝑀 = 0 ∧ 𝑃 = 0 ) ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃 ) ) } , ℝ , < ) ) = if ( ( 𝑁 = 0 ∧ ( 𝑀 gcd 𝑃 ) = 0 ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ ( 𝑀 gcd 𝑃 ) ) } , ℝ , < ) ) ) |
| 43 |
31 42
|
eqtr4d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑁 gcd ( 𝑀 gcd 𝑃 ) ) = if ( ( 𝑁 = 0 ∧ ( 𝑀 = 0 ∧ 𝑃 = 0 ) ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃 ) ) } , ℝ , < ) ) ) |
| 44 |
5 25 43
|
3eqtr4a |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑁 gcd 𝑀 ) gcd 𝑃 ) = ( 𝑁 gcd ( 𝑀 gcd 𝑃 ) ) ) |