Step |
Hyp |
Ref |
Expression |
1 |
|
gcdcllem1.1 |
⊢ 𝑆 = { 𝑧 ∈ ℤ ∣ ∀ 𝑛 ∈ 𝐴 𝑧 ∥ 𝑛 } |
2 |
|
1z |
⊢ 1 ∈ ℤ |
3 |
|
ssel |
⊢ ( 𝐴 ⊆ ℤ → ( 𝑛 ∈ 𝐴 → 𝑛 ∈ ℤ ) ) |
4 |
|
1dvds |
⊢ ( 𝑛 ∈ ℤ → 1 ∥ 𝑛 ) |
5 |
3 4
|
syl6 |
⊢ ( 𝐴 ⊆ ℤ → ( 𝑛 ∈ 𝐴 → 1 ∥ 𝑛 ) ) |
6 |
5
|
ralrimiv |
⊢ ( 𝐴 ⊆ ℤ → ∀ 𝑛 ∈ 𝐴 1 ∥ 𝑛 ) |
7 |
|
breq1 |
⊢ ( 𝑧 = 1 → ( 𝑧 ∥ 𝑛 ↔ 1 ∥ 𝑛 ) ) |
8 |
7
|
ralbidv |
⊢ ( 𝑧 = 1 → ( ∀ 𝑛 ∈ 𝐴 𝑧 ∥ 𝑛 ↔ ∀ 𝑛 ∈ 𝐴 1 ∥ 𝑛 ) ) |
9 |
8 1
|
elrab2 |
⊢ ( 1 ∈ 𝑆 ↔ ( 1 ∈ ℤ ∧ ∀ 𝑛 ∈ 𝐴 1 ∥ 𝑛 ) ) |
10 |
9
|
biimpri |
⊢ ( ( 1 ∈ ℤ ∧ ∀ 𝑛 ∈ 𝐴 1 ∥ 𝑛 ) → 1 ∈ 𝑆 ) |
11 |
2 6 10
|
sylancr |
⊢ ( 𝐴 ⊆ ℤ → 1 ∈ 𝑆 ) |
12 |
11
|
ne0d |
⊢ ( 𝐴 ⊆ ℤ → 𝑆 ≠ ∅ ) |
13 |
12
|
adantr |
⊢ ( ( 𝐴 ⊆ ℤ ∧ ∃ 𝑛 ∈ 𝐴 𝑛 ≠ 0 ) → 𝑆 ≠ ∅ ) |
14 |
|
neeq1 |
⊢ ( 𝑛 = 𝑤 → ( 𝑛 ≠ 0 ↔ 𝑤 ≠ 0 ) ) |
15 |
14
|
cbvrexvw |
⊢ ( ∃ 𝑛 ∈ 𝐴 𝑛 ≠ 0 ↔ ∃ 𝑤 ∈ 𝐴 𝑤 ≠ 0 ) |
16 |
|
breq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∥ 𝑛 ↔ 𝑦 ∥ 𝑛 ) ) |
17 |
16
|
ralbidv |
⊢ ( 𝑧 = 𝑦 → ( ∀ 𝑛 ∈ 𝐴 𝑧 ∥ 𝑛 ↔ ∀ 𝑛 ∈ 𝐴 𝑦 ∥ 𝑛 ) ) |
18 |
17 1
|
elrab2 |
⊢ ( 𝑦 ∈ 𝑆 ↔ ( 𝑦 ∈ ℤ ∧ ∀ 𝑛 ∈ 𝐴 𝑦 ∥ 𝑛 ) ) |
19 |
18
|
simprbi |
⊢ ( 𝑦 ∈ 𝑆 → ∀ 𝑛 ∈ 𝐴 𝑦 ∥ 𝑛 ) |
20 |
18
|
simplbi |
⊢ ( 𝑦 ∈ 𝑆 → 𝑦 ∈ ℤ ) |
21 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑛 ∈ 𝐴 ) → 𝑛 ∈ ℤ ) |
22 |
|
dvdsleabs |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑛 ≠ 0 ) → ( 𝑦 ∥ 𝑛 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) |
23 |
22
|
3expia |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 𝑛 ≠ 0 → ( 𝑦 ∥ 𝑛 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) ) |
24 |
21 23
|
sylan2 |
⊢ ( ( 𝑦 ∈ ℤ ∧ ( 𝐴 ⊆ ℤ ∧ 𝑛 ∈ 𝐴 ) ) → ( 𝑛 ≠ 0 → ( 𝑦 ∥ 𝑛 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) ) |
25 |
24
|
anassrs |
⊢ ( ( ( 𝑦 ∈ ℤ ∧ 𝐴 ⊆ ℤ ) ∧ 𝑛 ∈ 𝐴 ) → ( 𝑛 ≠ 0 → ( 𝑦 ∥ 𝑛 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) ) |
26 |
25
|
com23 |
⊢ ( ( ( 𝑦 ∈ ℤ ∧ 𝐴 ⊆ ℤ ) ∧ 𝑛 ∈ 𝐴 ) → ( 𝑦 ∥ 𝑛 → ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) ) |
27 |
26
|
ralrimiva |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝐴 ⊆ ℤ ) → ∀ 𝑛 ∈ 𝐴 ( 𝑦 ∥ 𝑛 → ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) ) |
28 |
27
|
ancoms |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑦 ∈ ℤ ) → ∀ 𝑛 ∈ 𝐴 ( 𝑦 ∥ 𝑛 → ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) ) |
29 |
20 28
|
sylan2 |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑦 ∈ 𝑆 ) → ∀ 𝑛 ∈ 𝐴 ( 𝑦 ∥ 𝑛 → ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) ) |
30 |
|
r19.26 |
⊢ ( ∀ 𝑛 ∈ 𝐴 ( 𝑦 ∥ 𝑛 ∧ ( 𝑦 ∥ 𝑛 → ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) ) ↔ ( ∀ 𝑛 ∈ 𝐴 𝑦 ∥ 𝑛 ∧ ∀ 𝑛 ∈ 𝐴 ( 𝑦 ∥ 𝑛 → ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) ) ) |
31 |
|
pm3.35 |
⊢ ( ( 𝑦 ∥ 𝑛 ∧ ( 𝑦 ∥ 𝑛 → ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) ) → ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) |
32 |
31
|
ralimi |
⊢ ( ∀ 𝑛 ∈ 𝐴 ( 𝑦 ∥ 𝑛 ∧ ( 𝑦 ∥ 𝑛 → ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) ) → ∀ 𝑛 ∈ 𝐴 ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) |
33 |
30 32
|
sylbir |
⊢ ( ( ∀ 𝑛 ∈ 𝐴 𝑦 ∥ 𝑛 ∧ ∀ 𝑛 ∈ 𝐴 ( 𝑦 ∥ 𝑛 → ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) ) → ∀ 𝑛 ∈ 𝐴 ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) |
34 |
19 29 33
|
syl2an2 |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑦 ∈ 𝑆 ) → ∀ 𝑛 ∈ 𝐴 ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) |
35 |
34
|
ralrimiva |
⊢ ( 𝐴 ⊆ ℤ → ∀ 𝑦 ∈ 𝑆 ∀ 𝑛 ∈ 𝐴 ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) |
36 |
|
fveq2 |
⊢ ( 𝑛 = 𝑤 → ( abs ‘ 𝑛 ) = ( abs ‘ 𝑤 ) ) |
37 |
36
|
breq2d |
⊢ ( 𝑛 = 𝑤 → ( 𝑦 ≤ ( abs ‘ 𝑛 ) ↔ 𝑦 ≤ ( abs ‘ 𝑤 ) ) ) |
38 |
14 37
|
imbi12d |
⊢ ( 𝑛 = 𝑤 → ( ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ↔ ( 𝑤 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑤 ) ) ) ) |
39 |
38
|
cbvralvw |
⊢ ( ∀ 𝑛 ∈ 𝐴 ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ↔ ∀ 𝑤 ∈ 𝐴 ( 𝑤 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑤 ) ) ) |
40 |
39
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝑆 ∀ 𝑛 ∈ 𝐴 ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ↔ ∀ 𝑦 ∈ 𝑆 ∀ 𝑤 ∈ 𝐴 ( 𝑤 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑤 ) ) ) |
41 |
|
ralcom |
⊢ ( ∀ 𝑦 ∈ 𝑆 ∀ 𝑤 ∈ 𝐴 ( 𝑤 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑦 ∈ 𝑆 ( 𝑤 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑤 ) ) ) |
42 |
|
r19.21v |
⊢ ( ∀ 𝑦 ∈ 𝑆 ( 𝑤 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑤 ) ) ↔ ( 𝑤 ≠ 0 → ∀ 𝑦 ∈ 𝑆 𝑦 ≤ ( abs ‘ 𝑤 ) ) ) |
43 |
42
|
ralbii |
⊢ ( ∀ 𝑤 ∈ 𝐴 ∀ 𝑦 ∈ 𝑆 ( 𝑤 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐴 ( 𝑤 ≠ 0 → ∀ 𝑦 ∈ 𝑆 𝑦 ≤ ( abs ‘ 𝑤 ) ) ) |
44 |
40 41 43
|
3bitri |
⊢ ( ∀ 𝑦 ∈ 𝑆 ∀ 𝑛 ∈ 𝐴 ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ↔ ∀ 𝑤 ∈ 𝐴 ( 𝑤 ≠ 0 → ∀ 𝑦 ∈ 𝑆 𝑦 ≤ ( abs ‘ 𝑤 ) ) ) |
45 |
35 44
|
sylib |
⊢ ( 𝐴 ⊆ ℤ → ∀ 𝑤 ∈ 𝐴 ( 𝑤 ≠ 0 → ∀ 𝑦 ∈ 𝑆 𝑦 ≤ ( abs ‘ 𝑤 ) ) ) |
46 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ∈ ℤ ) |
47 |
|
nn0abscl |
⊢ ( 𝑤 ∈ ℤ → ( abs ‘ 𝑤 ) ∈ ℕ0 ) |
48 |
46 47
|
syl |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑤 ∈ 𝐴 ) → ( abs ‘ 𝑤 ) ∈ ℕ0 ) |
49 |
48
|
nn0zd |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑤 ∈ 𝐴 ) → ( abs ‘ 𝑤 ) ∈ ℤ ) |
50 |
|
breq2 |
⊢ ( 𝑥 = ( abs ‘ 𝑤 ) → ( 𝑦 ≤ 𝑥 ↔ 𝑦 ≤ ( abs ‘ 𝑤 ) ) ) |
51 |
50
|
ralbidv |
⊢ ( 𝑥 = ( abs ‘ 𝑤 ) → ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ↔ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ ( abs ‘ 𝑤 ) ) ) |
52 |
51
|
adantl |
⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑥 = ( abs ‘ 𝑤 ) ) → ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ↔ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ ( abs ‘ 𝑤 ) ) ) |
53 |
49 52
|
rspcedv |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑤 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ ( abs ‘ 𝑤 ) → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) ) |
54 |
53
|
imim2d |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑤 ≠ 0 → ∀ 𝑦 ∈ 𝑆 𝑦 ≤ ( abs ‘ 𝑤 ) ) → ( 𝑤 ≠ 0 → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) ) ) |
55 |
54
|
ralimdva |
⊢ ( 𝐴 ⊆ ℤ → ( ∀ 𝑤 ∈ 𝐴 ( 𝑤 ≠ 0 → ∀ 𝑦 ∈ 𝑆 𝑦 ≤ ( abs ‘ 𝑤 ) ) → ∀ 𝑤 ∈ 𝐴 ( 𝑤 ≠ 0 → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) ) ) |
56 |
45 55
|
mpd |
⊢ ( 𝐴 ⊆ ℤ → ∀ 𝑤 ∈ 𝐴 ( 𝑤 ≠ 0 → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) ) |
57 |
|
r19.23v |
⊢ ( ∀ 𝑤 ∈ 𝐴 ( 𝑤 ≠ 0 → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) ↔ ( ∃ 𝑤 ∈ 𝐴 𝑤 ≠ 0 → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) ) |
58 |
56 57
|
sylib |
⊢ ( 𝐴 ⊆ ℤ → ( ∃ 𝑤 ∈ 𝐴 𝑤 ≠ 0 → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) ) |
59 |
58
|
imp |
⊢ ( ( 𝐴 ⊆ ℤ ∧ ∃ 𝑤 ∈ 𝐴 𝑤 ≠ 0 ) → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) |
60 |
15 59
|
sylan2b |
⊢ ( ( 𝐴 ⊆ ℤ ∧ ∃ 𝑛 ∈ 𝐴 𝑛 ≠ 0 ) → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) |
61 |
13 60
|
jca |
⊢ ( ( 𝐴 ⊆ ℤ ∧ ∃ 𝑛 ∈ 𝐴 𝑛 ≠ 0 ) → ( 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) ) |