Step |
Hyp |
Ref |
Expression |
1 |
|
gcdcllem2.1 |
⊢ 𝑆 = { 𝑧 ∈ ℤ ∣ ∀ 𝑛 ∈ { 𝑀 , 𝑁 } 𝑧 ∥ 𝑛 } |
2 |
|
gcdcllem2.2 |
⊢ 𝑅 = { 𝑧 ∈ ℤ ∣ ( 𝑧 ∥ 𝑀 ∧ 𝑧 ∥ 𝑁 ) } |
3 |
|
breq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∥ 𝑀 ↔ 𝑥 ∥ 𝑀 ) ) |
4 |
|
breq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∥ 𝑁 ↔ 𝑥 ∥ 𝑁 ) ) |
5 |
3 4
|
anbi12d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑧 ∥ 𝑀 ∧ 𝑧 ∥ 𝑁 ) ↔ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑁 ) ) ) |
6 |
5 2
|
elrab2 |
⊢ ( 𝑥 ∈ 𝑅 ↔ ( 𝑥 ∈ ℤ ∧ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑁 ) ) ) |
7 |
|
breq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∥ 𝑛 ↔ 𝑥 ∥ 𝑛 ) ) |
8 |
7
|
ralbidv |
⊢ ( 𝑧 = 𝑥 → ( ∀ 𝑛 ∈ { 𝑀 , 𝑁 } 𝑧 ∥ 𝑛 ↔ ∀ 𝑛 ∈ { 𝑀 , 𝑁 } 𝑥 ∥ 𝑛 ) ) |
9 |
8 1
|
elrab2 |
⊢ ( 𝑥 ∈ 𝑆 ↔ ( 𝑥 ∈ ℤ ∧ ∀ 𝑛 ∈ { 𝑀 , 𝑁 } 𝑥 ∥ 𝑛 ) ) |
10 |
|
breq2 |
⊢ ( 𝑛 = 𝑀 → ( 𝑥 ∥ 𝑛 ↔ 𝑥 ∥ 𝑀 ) ) |
11 |
|
breq2 |
⊢ ( 𝑛 = 𝑁 → ( 𝑥 ∥ 𝑛 ↔ 𝑥 ∥ 𝑁 ) ) |
12 |
10 11
|
ralprg |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ∀ 𝑛 ∈ { 𝑀 , 𝑁 } 𝑥 ∥ 𝑛 ↔ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑁 ) ) ) |
13 |
12
|
anbi2d |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑥 ∈ ℤ ∧ ∀ 𝑛 ∈ { 𝑀 , 𝑁 } 𝑥 ∥ 𝑛 ) ↔ ( 𝑥 ∈ ℤ ∧ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑁 ) ) ) ) |
14 |
9 13
|
syl5bb |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑥 ∈ 𝑆 ↔ ( 𝑥 ∈ ℤ ∧ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑁 ) ) ) ) |
15 |
6 14
|
bitr4id |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑥 ∈ 𝑅 ↔ 𝑥 ∈ 𝑆 ) ) |
16 |
15
|
eqrdv |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑅 = 𝑆 ) |