| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gcdcl | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  gcd  𝑁 )  ∈  ℕ0 ) | 
						
							| 2 | 1 | nn0zd | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  gcd  𝑁 )  ∈  ℤ ) | 
						
							| 3 |  | simpl | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  𝑀  ∈  ℤ ) | 
						
							| 4 |  | lcmcl | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  lcm  𝑁 )  ∈  ℕ0 ) | 
						
							| 5 | 4 | nn0zd | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  lcm  𝑁 )  ∈  ℤ ) | 
						
							| 6 |  | gcddvds | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑀  gcd  𝑁 )  ∥  𝑀  ∧  ( 𝑀  gcd  𝑁 )  ∥  𝑁 ) ) | 
						
							| 7 | 6 | simpld | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  gcd  𝑁 )  ∥  𝑀 ) | 
						
							| 8 |  | dvdslcm | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  ∥  ( 𝑀  lcm  𝑁 )  ∧  𝑁  ∥  ( 𝑀  lcm  𝑁 ) ) ) | 
						
							| 9 | 8 | simpld | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  𝑀  ∥  ( 𝑀  lcm  𝑁 ) ) | 
						
							| 10 | 2 3 5 7 9 | dvdstrd | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  gcd  𝑁 )  ∥  ( 𝑀  lcm  𝑁 ) ) |