Step |
Hyp |
Ref |
Expression |
1 |
|
gcdval |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 gcd 𝑦 ) = if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦 ) } , ℝ , < ) ) ) |
2 |
|
gcdcl |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 gcd 𝑦 ) ∈ ℕ0 ) |
3 |
1 2
|
eqeltrrd |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦 ) } , ℝ , < ) ) ∈ ℕ0 ) |
4 |
3
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦 ) } , ℝ , < ) ) ∈ ℕ0 |
5 |
|
df-gcd |
⊢ gcd = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℤ ↦ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦 ) } , ℝ , < ) ) ) |
6 |
5
|
fmpo |
⊢ ( ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦 ) } , ℝ , < ) ) ∈ ℕ0 ↔ gcd : ( ℤ × ℤ ) ⟶ ℕ0 ) |
7 |
4 6
|
mpbi |
⊢ gcd : ( ℤ × ℤ ) ⟶ ℕ0 |