| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gcdi.1 |
⊢ 𝐾 ∈ ℕ0 |
| 2 |
|
gcdi.2 |
⊢ 𝑅 ∈ ℕ0 |
| 3 |
|
gcdi.3 |
⊢ 𝑁 ∈ ℕ0 |
| 4 |
|
gcdi.5 |
⊢ ( 𝑁 gcd 𝑅 ) = 𝐺 |
| 5 |
|
gcdi.4 |
⊢ ( ( 𝐾 · 𝑁 ) + 𝑅 ) = 𝑀 |
| 6 |
1 3
|
nn0mulcli |
⊢ ( 𝐾 · 𝑁 ) ∈ ℕ0 |
| 7 |
6
|
nn0cni |
⊢ ( 𝐾 · 𝑁 ) ∈ ℂ |
| 8 |
2
|
nn0cni |
⊢ 𝑅 ∈ ℂ |
| 9 |
7 8 5
|
addcomli |
⊢ ( 𝑅 + ( 𝐾 · 𝑁 ) ) = 𝑀 |
| 10 |
9
|
oveq2i |
⊢ ( 𝑁 gcd ( 𝑅 + ( 𝐾 · 𝑁 ) ) ) = ( 𝑁 gcd 𝑀 ) |
| 11 |
1
|
nn0zi |
⊢ 𝐾 ∈ ℤ |
| 12 |
3
|
nn0zi |
⊢ 𝑁 ∈ ℤ |
| 13 |
2
|
nn0zi |
⊢ 𝑅 ∈ ℤ |
| 14 |
|
gcdaddm |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ) → ( 𝑁 gcd 𝑅 ) = ( 𝑁 gcd ( 𝑅 + ( 𝐾 · 𝑁 ) ) ) ) |
| 15 |
11 12 13 14
|
mp3an |
⊢ ( 𝑁 gcd 𝑅 ) = ( 𝑁 gcd ( 𝑅 + ( 𝐾 · 𝑁 ) ) ) |
| 16 |
1 3 2
|
numcl |
⊢ ( ( 𝐾 · 𝑁 ) + 𝑅 ) ∈ ℕ0 |
| 17 |
5 16
|
eqeltrri |
⊢ 𝑀 ∈ ℕ0 |
| 18 |
17
|
nn0zi |
⊢ 𝑀 ∈ ℤ |
| 19 |
|
gcdcom |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) = ( 𝑁 gcd 𝑀 ) ) |
| 20 |
18 12 19
|
mp2an |
⊢ ( 𝑀 gcd 𝑁 ) = ( 𝑁 gcd 𝑀 ) |
| 21 |
10 15 20
|
3eqtr4i |
⊢ ( 𝑁 gcd 𝑅 ) = ( 𝑀 gcd 𝑁 ) |
| 22 |
21 4
|
eqtr3i |
⊢ ( 𝑀 gcd 𝑁 ) = 𝐺 |