Step |
Hyp |
Ref |
Expression |
1 |
|
gcdi.1 |
⊢ 𝐾 ∈ ℕ0 |
2 |
|
gcdi.2 |
⊢ 𝑅 ∈ ℕ0 |
3 |
|
gcdi.3 |
⊢ 𝑁 ∈ ℕ0 |
4 |
|
gcdi.5 |
⊢ ( 𝑁 gcd 𝑅 ) = 𝐺 |
5 |
|
gcdi.4 |
⊢ ( ( 𝐾 · 𝑁 ) + 𝑅 ) = 𝑀 |
6 |
1 3
|
nn0mulcli |
⊢ ( 𝐾 · 𝑁 ) ∈ ℕ0 |
7 |
6
|
nn0cni |
⊢ ( 𝐾 · 𝑁 ) ∈ ℂ |
8 |
2
|
nn0cni |
⊢ 𝑅 ∈ ℂ |
9 |
7 8 5
|
addcomli |
⊢ ( 𝑅 + ( 𝐾 · 𝑁 ) ) = 𝑀 |
10 |
9
|
oveq2i |
⊢ ( 𝑁 gcd ( 𝑅 + ( 𝐾 · 𝑁 ) ) ) = ( 𝑁 gcd 𝑀 ) |
11 |
1
|
nn0zi |
⊢ 𝐾 ∈ ℤ |
12 |
3
|
nn0zi |
⊢ 𝑁 ∈ ℤ |
13 |
2
|
nn0zi |
⊢ 𝑅 ∈ ℤ |
14 |
|
gcdaddm |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ) → ( 𝑁 gcd 𝑅 ) = ( 𝑁 gcd ( 𝑅 + ( 𝐾 · 𝑁 ) ) ) ) |
15 |
11 12 13 14
|
mp3an |
⊢ ( 𝑁 gcd 𝑅 ) = ( 𝑁 gcd ( 𝑅 + ( 𝐾 · 𝑁 ) ) ) |
16 |
1 3 2
|
numcl |
⊢ ( ( 𝐾 · 𝑁 ) + 𝑅 ) ∈ ℕ0 |
17 |
5 16
|
eqeltrri |
⊢ 𝑀 ∈ ℕ0 |
18 |
17
|
nn0zi |
⊢ 𝑀 ∈ ℤ |
19 |
|
gcdcom |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) = ( 𝑁 gcd 𝑀 ) ) |
20 |
18 12 19
|
mp2an |
⊢ ( 𝑀 gcd 𝑁 ) = ( 𝑁 gcd 𝑀 ) |
21 |
10 15 20
|
3eqtr4i |
⊢ ( 𝑁 gcd 𝑅 ) = ( 𝑀 gcd 𝑁 ) |
22 |
21 4
|
eqtr3i |
⊢ ( 𝑀 gcd 𝑁 ) = 𝐺 |