Description: The gcd of an integer and 0 is the integer's absolute value. Theorem 1.4(d)2 in ApostolNT p. 16. (Contributed by Paul Chapman, 31-Mar-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | gcdid0 | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 gcd 0 ) = ( abs ‘ 𝑁 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z | ⊢ 0 ∈ ℤ | |
2 | gcdcom | ⊢ ( ( 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 gcd 𝑁 ) = ( 𝑁 gcd 0 ) ) | |
3 | 1 2 | mpan | ⊢ ( 𝑁 ∈ ℤ → ( 0 gcd 𝑁 ) = ( 𝑁 gcd 0 ) ) |
4 | gcd0id | ⊢ ( 𝑁 ∈ ℤ → ( 0 gcd 𝑁 ) = ( abs ‘ 𝑁 ) ) | |
5 | 3 4 | eqtr3d | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 gcd 0 ) = ( abs ‘ 𝑁 ) ) |