Metamath Proof Explorer


Theorem gcdid0

Description: The gcd of an integer and 0 is the integer's absolute value. Theorem 1.4(d)2 in ApostolNT p. 16. (Contributed by Paul Chapman, 31-Mar-2011)

Ref Expression
Assertion gcdid0 ( 𝑁 ∈ ℤ → ( 𝑁 gcd 0 ) = ( abs ‘ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 0z 0 ∈ ℤ
2 gcdcom ( ( 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 gcd 𝑁 ) = ( 𝑁 gcd 0 ) )
3 1 2 mpan ( 𝑁 ∈ ℤ → ( 0 gcd 𝑁 ) = ( 𝑁 gcd 0 ) )
4 gcd0id ( 𝑁 ∈ ℤ → ( 0 gcd 𝑁 ) = ( abs ‘ 𝑁 ) )
5 3 4 eqtr3d ( 𝑁 ∈ ℤ → ( 𝑁 gcd 0 ) = ( abs ‘ 𝑁 ) )