| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gcdi.1 | ⊢ 𝐾  ∈  ℕ0 | 
						
							| 2 |  | gcdi.2 | ⊢ 𝑅  ∈  ℕ0 | 
						
							| 3 |  | gcdmodi.3 | ⊢ 𝑁  ∈  ℕ | 
						
							| 4 |  | gcdmodi.4 | ⊢ ( 𝐾  mod  𝑁 )  =  ( 𝑅  mod  𝑁 ) | 
						
							| 5 |  | gcdmodi.5 | ⊢ ( 𝑁  gcd  𝑅 )  =  𝐺 | 
						
							| 6 | 4 | oveq1i | ⊢ ( ( 𝐾  mod  𝑁 )  gcd  𝑁 )  =  ( ( 𝑅  mod  𝑁 )  gcd  𝑁 ) | 
						
							| 7 | 1 | nn0zi | ⊢ 𝐾  ∈  ℤ | 
						
							| 8 |  | modgcd | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝐾  mod  𝑁 )  gcd  𝑁 )  =  ( 𝐾  gcd  𝑁 ) ) | 
						
							| 9 | 7 3 8 | mp2an | ⊢ ( ( 𝐾  mod  𝑁 )  gcd  𝑁 )  =  ( 𝐾  gcd  𝑁 ) | 
						
							| 10 | 2 | nn0zi | ⊢ 𝑅  ∈  ℤ | 
						
							| 11 |  | modgcd | ⊢ ( ( 𝑅  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑅  mod  𝑁 )  gcd  𝑁 )  =  ( 𝑅  gcd  𝑁 ) ) | 
						
							| 12 | 10 3 11 | mp2an | ⊢ ( ( 𝑅  mod  𝑁 )  gcd  𝑁 )  =  ( 𝑅  gcd  𝑁 ) | 
						
							| 13 | 6 9 12 | 3eqtr3i | ⊢ ( 𝐾  gcd  𝑁 )  =  ( 𝑅  gcd  𝑁 ) | 
						
							| 14 | 3 | nnzi | ⊢ 𝑁  ∈  ℤ | 
						
							| 15 |  | gcdcom | ⊢ ( ( 𝑅  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑅  gcd  𝑁 )  =  ( 𝑁  gcd  𝑅 ) ) | 
						
							| 16 | 10 14 15 | mp2an | ⊢ ( 𝑅  gcd  𝑁 )  =  ( 𝑁  gcd  𝑅 ) | 
						
							| 17 | 13 16 5 | 3eqtri | ⊢ ( 𝐾  gcd  𝑁 )  =  𝐺 |