Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑘 = 1 → ( 𝑀 · 𝑘 ) = ( 𝑀 · 1 ) ) |
2 |
1
|
oveq2d |
⊢ ( 𝑘 = 1 → ( 𝑀 gcd ( 𝑀 · 𝑘 ) ) = ( 𝑀 gcd ( 𝑀 · 1 ) ) ) |
3 |
2
|
eqeq1d |
⊢ ( 𝑘 = 1 → ( ( 𝑀 gcd ( 𝑀 · 𝑘 ) ) = 𝑀 ↔ ( 𝑀 gcd ( 𝑀 · 1 ) ) = 𝑀 ) ) |
4 |
3
|
imbi2d |
⊢ ( 𝑘 = 1 → ( ( 𝑀 ∈ ℕ → ( 𝑀 gcd ( 𝑀 · 𝑘 ) ) = 𝑀 ) ↔ ( 𝑀 ∈ ℕ → ( 𝑀 gcd ( 𝑀 · 1 ) ) = 𝑀 ) ) ) |
5 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝑀 · 𝑘 ) = ( 𝑀 · 𝑛 ) ) |
6 |
5
|
oveq2d |
⊢ ( 𝑘 = 𝑛 → ( 𝑀 gcd ( 𝑀 · 𝑘 ) ) = ( 𝑀 gcd ( 𝑀 · 𝑛 ) ) ) |
7 |
6
|
eqeq1d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝑀 gcd ( 𝑀 · 𝑘 ) ) = 𝑀 ↔ ( 𝑀 gcd ( 𝑀 · 𝑛 ) ) = 𝑀 ) ) |
8 |
7
|
imbi2d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝑀 ∈ ℕ → ( 𝑀 gcd ( 𝑀 · 𝑘 ) ) = 𝑀 ) ↔ ( 𝑀 ∈ ℕ → ( 𝑀 gcd ( 𝑀 · 𝑛 ) ) = 𝑀 ) ) ) |
9 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝑀 · 𝑘 ) = ( 𝑀 · ( 𝑛 + 1 ) ) ) |
10 |
9
|
oveq2d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝑀 gcd ( 𝑀 · 𝑘 ) ) = ( 𝑀 gcd ( 𝑀 · ( 𝑛 + 1 ) ) ) ) |
11 |
10
|
eqeq1d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝑀 gcd ( 𝑀 · 𝑘 ) ) = 𝑀 ↔ ( 𝑀 gcd ( 𝑀 · ( 𝑛 + 1 ) ) ) = 𝑀 ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝑀 ∈ ℕ → ( 𝑀 gcd ( 𝑀 · 𝑘 ) ) = 𝑀 ) ↔ ( 𝑀 ∈ ℕ → ( 𝑀 gcd ( 𝑀 · ( 𝑛 + 1 ) ) ) = 𝑀 ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑘 = 𝑁 → ( 𝑀 · 𝑘 ) = ( 𝑀 · 𝑁 ) ) |
14 |
13
|
oveq2d |
⊢ ( 𝑘 = 𝑁 → ( 𝑀 gcd ( 𝑀 · 𝑘 ) ) = ( 𝑀 gcd ( 𝑀 · 𝑁 ) ) ) |
15 |
14
|
eqeq1d |
⊢ ( 𝑘 = 𝑁 → ( ( 𝑀 gcd ( 𝑀 · 𝑘 ) ) = 𝑀 ↔ ( 𝑀 gcd ( 𝑀 · 𝑁 ) ) = 𝑀 ) ) |
16 |
15
|
imbi2d |
⊢ ( 𝑘 = 𝑁 → ( ( 𝑀 ∈ ℕ → ( 𝑀 gcd ( 𝑀 · 𝑘 ) ) = 𝑀 ) ↔ ( 𝑀 ∈ ℕ → ( 𝑀 gcd ( 𝑀 · 𝑁 ) ) = 𝑀 ) ) ) |
17 |
|
nncn |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℂ ) |
18 |
17
|
mulid1d |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 · 1 ) = 𝑀 ) |
19 |
18
|
oveq2d |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 gcd ( 𝑀 · 1 ) ) = ( 𝑀 gcd 𝑀 ) ) |
20 |
|
nnz |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) |
21 |
|
gcdid |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 gcd 𝑀 ) = ( abs ‘ 𝑀 ) ) |
22 |
20 21
|
syl |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 gcd 𝑀 ) = ( abs ‘ 𝑀 ) ) |
23 |
|
nnre |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) |
24 |
|
nnnn0 |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) |
25 |
24
|
nn0ge0d |
⊢ ( 𝑀 ∈ ℕ → 0 ≤ 𝑀 ) |
26 |
23 25
|
absidd |
⊢ ( 𝑀 ∈ ℕ → ( abs ‘ 𝑀 ) = 𝑀 ) |
27 |
22 26
|
eqtrd |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 gcd 𝑀 ) = 𝑀 ) |
28 |
19 27
|
eqtrd |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 gcd ( 𝑀 · 1 ) ) = 𝑀 ) |
29 |
|
1z |
⊢ 1 ∈ ℤ |
30 |
|
nnz |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℤ ) |
31 |
|
zmulcl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 𝑀 · 𝑛 ) ∈ ℤ ) |
32 |
20 30 31
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝑀 · 𝑛 ) ∈ ℤ ) |
33 |
|
gcdaddm |
⊢ ( ( 1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ( 𝑀 · 𝑛 ) ∈ ℤ ) → ( 𝑀 gcd ( 𝑀 · 𝑛 ) ) = ( 𝑀 gcd ( ( 𝑀 · 𝑛 ) + ( 1 · 𝑀 ) ) ) ) |
34 |
29 20 32 33
|
mp3an2ani |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝑀 gcd ( 𝑀 · 𝑛 ) ) = ( 𝑀 gcd ( ( 𝑀 · 𝑛 ) + ( 1 · 𝑀 ) ) ) ) |
35 |
|
nncn |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) |
36 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
37 |
|
adddi |
⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑀 · ( 𝑛 + 1 ) ) = ( ( 𝑀 · 𝑛 ) + ( 𝑀 · 1 ) ) ) |
38 |
36 37
|
mp3an3 |
⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( 𝑀 · ( 𝑛 + 1 ) ) = ( ( 𝑀 · 𝑛 ) + ( 𝑀 · 1 ) ) ) |
39 |
|
mulcom |
⊢ ( ( 𝑀 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑀 · 1 ) = ( 1 · 𝑀 ) ) |
40 |
36 39
|
mpan2 |
⊢ ( 𝑀 ∈ ℂ → ( 𝑀 · 1 ) = ( 1 · 𝑀 ) ) |
41 |
40
|
adantr |
⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( 𝑀 · 1 ) = ( 1 · 𝑀 ) ) |
42 |
41
|
oveq2d |
⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( ( 𝑀 · 𝑛 ) + ( 𝑀 · 1 ) ) = ( ( 𝑀 · 𝑛 ) + ( 1 · 𝑀 ) ) ) |
43 |
38 42
|
eqtrd |
⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( 𝑀 · ( 𝑛 + 1 ) ) = ( ( 𝑀 · 𝑛 ) + ( 1 · 𝑀 ) ) ) |
44 |
17 35 43
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝑀 · ( 𝑛 + 1 ) ) = ( ( 𝑀 · 𝑛 ) + ( 1 · 𝑀 ) ) ) |
45 |
44
|
oveq2d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝑀 gcd ( 𝑀 · ( 𝑛 + 1 ) ) ) = ( 𝑀 gcd ( ( 𝑀 · 𝑛 ) + ( 1 · 𝑀 ) ) ) ) |
46 |
34 45
|
eqtr4d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝑀 gcd ( 𝑀 · 𝑛 ) ) = ( 𝑀 gcd ( 𝑀 · ( 𝑛 + 1 ) ) ) ) |
47 |
46
|
eqeq1d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → ( ( 𝑀 gcd ( 𝑀 · 𝑛 ) ) = 𝑀 ↔ ( 𝑀 gcd ( 𝑀 · ( 𝑛 + 1 ) ) ) = 𝑀 ) ) |
48 |
47
|
biimpd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → ( ( 𝑀 gcd ( 𝑀 · 𝑛 ) ) = 𝑀 → ( 𝑀 gcd ( 𝑀 · ( 𝑛 + 1 ) ) ) = 𝑀 ) ) |
49 |
48
|
expcom |
⊢ ( 𝑛 ∈ ℕ → ( 𝑀 ∈ ℕ → ( ( 𝑀 gcd ( 𝑀 · 𝑛 ) ) = 𝑀 → ( 𝑀 gcd ( 𝑀 · ( 𝑛 + 1 ) ) ) = 𝑀 ) ) ) |
50 |
49
|
a2d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑀 ∈ ℕ → ( 𝑀 gcd ( 𝑀 · 𝑛 ) ) = 𝑀 ) → ( 𝑀 ∈ ℕ → ( 𝑀 gcd ( 𝑀 · ( 𝑛 + 1 ) ) ) = 𝑀 ) ) ) |
51 |
4 8 12 16 28 50
|
nnind |
⊢ ( 𝑁 ∈ ℕ → ( 𝑀 ∈ ℕ → ( 𝑀 gcd ( 𝑀 · 𝑁 ) ) = 𝑀 ) ) |
52 |
51
|
impcom |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 gcd ( 𝑀 · 𝑁 ) ) = 𝑀 ) |