Step |
Hyp |
Ref |
Expression |
1 |
|
gcdmultipled.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
2 |
|
gcdmultipled.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
3 |
1
|
nn0zd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
5 |
|
gcdaddm |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 ∈ ℤ ) → ( 𝑀 gcd 0 ) = ( 𝑀 gcd ( 0 + ( 𝑁 · 𝑀 ) ) ) ) |
6 |
2 3 4 5
|
syl3anc |
⊢ ( 𝜑 → ( 𝑀 gcd 0 ) = ( 𝑀 gcd ( 0 + ( 𝑁 · 𝑀 ) ) ) ) |
7 |
|
nn0gcdid0 |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 gcd 0 ) = 𝑀 ) |
8 |
1 7
|
syl |
⊢ ( 𝜑 → ( 𝑀 gcd 0 ) = 𝑀 ) |
9 |
2 3
|
zmulcld |
⊢ ( 𝜑 → ( 𝑁 · 𝑀 ) ∈ ℤ ) |
10 |
9
|
zcnd |
⊢ ( 𝜑 → ( 𝑁 · 𝑀 ) ∈ ℂ ) |
11 |
10
|
addid2d |
⊢ ( 𝜑 → ( 0 + ( 𝑁 · 𝑀 ) ) = ( 𝑁 · 𝑀 ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝜑 → ( 𝑀 gcd ( 0 + ( 𝑁 · 𝑀 ) ) ) = ( 𝑀 gcd ( 𝑁 · 𝑀 ) ) ) |
13 |
6 8 12
|
3eqtr3rd |
⊢ ( 𝜑 → ( 𝑀 gcd ( 𝑁 · 𝑀 ) ) = 𝑀 ) |