| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nncn | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℂ ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℤ )  →  𝑀  ∈  ℂ ) | 
						
							| 3 |  | zcn | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℂ ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℤ )  →  𝑁  ∈  ℂ ) | 
						
							| 5 | 2 4 | mulcomd | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  ·  𝑁 )  =  ( 𝑁  ·  𝑀 ) ) | 
						
							| 6 | 5 | oveq2d | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  gcd  ( 𝑀  ·  𝑁 ) )  =  ( 𝑀  gcd  ( 𝑁  ·  𝑀 ) ) ) | 
						
							| 7 |  | nnnn0 | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℕ0 ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℤ )  →  𝑀  ∈  ℕ0 ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℤ )  →  𝑁  ∈  ℤ ) | 
						
							| 10 | 8 9 | gcdmultipled | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  gcd  ( 𝑁  ·  𝑀 ) )  =  𝑀 ) | 
						
							| 11 | 6 10 | eqtrd | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  gcd  ( 𝑀  ·  𝑁 ) )  =  𝑀 ) |