Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑁 = 0 → ( 𝑀 · 𝑁 ) = ( 𝑀 · 0 ) ) |
2 |
1
|
oveq2d |
⊢ ( 𝑁 = 0 → ( 𝑀 gcd ( 𝑀 · 𝑁 ) ) = ( 𝑀 gcd ( 𝑀 · 0 ) ) ) |
3 |
2
|
eqeq1d |
⊢ ( 𝑁 = 0 → ( ( 𝑀 gcd ( 𝑀 · 𝑁 ) ) = 𝑀 ↔ ( 𝑀 gcd ( 𝑀 · 0 ) ) = 𝑀 ) ) |
4 |
|
nncn |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℂ ) |
5 |
|
zcn |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) |
6 |
|
absmul |
⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( abs ‘ ( 𝑀 · 𝑁 ) ) = ( ( abs ‘ 𝑀 ) · ( abs ‘ 𝑁 ) ) ) |
7 |
4 5 6
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( abs ‘ ( 𝑀 · 𝑁 ) ) = ( ( abs ‘ 𝑀 ) · ( abs ‘ 𝑁 ) ) ) |
8 |
|
nnre |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) |
9 |
|
nnnn0 |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) |
10 |
9
|
nn0ge0d |
⊢ ( 𝑀 ∈ ℕ → 0 ≤ 𝑀 ) |
11 |
8 10
|
absidd |
⊢ ( 𝑀 ∈ ℕ → ( abs ‘ 𝑀 ) = 𝑀 ) |
12 |
11
|
oveq1d |
⊢ ( 𝑀 ∈ ℕ → ( ( abs ‘ 𝑀 ) · ( abs ‘ 𝑁 ) ) = ( 𝑀 · ( abs ‘ 𝑁 ) ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) · ( abs ‘ 𝑁 ) ) = ( 𝑀 · ( abs ‘ 𝑁 ) ) ) |
14 |
7 13
|
eqtrd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( abs ‘ ( 𝑀 · 𝑁 ) ) = ( 𝑀 · ( abs ‘ 𝑁 ) ) ) |
15 |
14
|
oveq2d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd ( abs ‘ ( 𝑀 · 𝑁 ) ) ) = ( 𝑀 gcd ( 𝑀 · ( abs ‘ 𝑁 ) ) ) ) |
16 |
15
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 ≠ 0 ) → ( 𝑀 gcd ( abs ‘ ( 𝑀 · 𝑁 ) ) ) = ( 𝑀 gcd ( 𝑀 · ( abs ‘ 𝑁 ) ) ) ) |
17 |
|
simpll |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 ≠ 0 ) → 𝑀 ∈ ℕ ) |
18 |
17
|
nnzd |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 ≠ 0 ) → 𝑀 ∈ ℤ ) |
19 |
|
nnz |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) |
20 |
|
zmulcl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 · 𝑁 ) ∈ ℤ ) |
21 |
19 20
|
sylan |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 · 𝑁 ) ∈ ℤ ) |
22 |
21
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 ≠ 0 ) → ( 𝑀 · 𝑁 ) ∈ ℤ ) |
23 |
|
gcdabs2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑀 · 𝑁 ) ∈ ℤ ) → ( 𝑀 gcd ( abs ‘ ( 𝑀 · 𝑁 ) ) ) = ( 𝑀 gcd ( 𝑀 · 𝑁 ) ) ) |
24 |
18 22 23
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 ≠ 0 ) → ( 𝑀 gcd ( abs ‘ ( 𝑀 · 𝑁 ) ) ) = ( 𝑀 gcd ( 𝑀 · 𝑁 ) ) ) |
25 |
|
nnabscl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( abs ‘ 𝑁 ) ∈ ℕ ) |
26 |
|
gcdmultiple |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( abs ‘ 𝑁 ) ∈ ℕ ) → ( 𝑀 gcd ( 𝑀 · ( abs ‘ 𝑁 ) ) ) = 𝑀 ) |
27 |
25 26
|
sylan2 |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑀 gcd ( 𝑀 · ( abs ‘ 𝑁 ) ) ) = 𝑀 ) |
28 |
27
|
anassrs |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 ≠ 0 ) → ( 𝑀 gcd ( 𝑀 · ( abs ‘ 𝑁 ) ) ) = 𝑀 ) |
29 |
16 24 28
|
3eqtr3d |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 ≠ 0 ) → ( 𝑀 gcd ( 𝑀 · 𝑁 ) ) = 𝑀 ) |
30 |
|
mul01 |
⊢ ( 𝑀 ∈ ℂ → ( 𝑀 · 0 ) = 0 ) |
31 |
30
|
oveq2d |
⊢ ( 𝑀 ∈ ℂ → ( 𝑀 gcd ( 𝑀 · 0 ) ) = ( 𝑀 gcd 0 ) ) |
32 |
4 31
|
syl |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 gcd ( 𝑀 · 0 ) ) = ( 𝑀 gcd 0 ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd ( 𝑀 · 0 ) ) = ( 𝑀 gcd 0 ) ) |
34 |
|
nn0gcdid0 |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 gcd 0 ) = 𝑀 ) |
35 |
9 34
|
syl |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 gcd 0 ) = 𝑀 ) |
36 |
35
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 0 ) = 𝑀 ) |
37 |
33 36
|
eqtrd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd ( 𝑀 · 0 ) ) = 𝑀 ) |
38 |
3 29 37
|
pm2.61ne |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd ( 𝑀 · 𝑁 ) ) = 𝑀 ) |