| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gcdcl | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  gcd  𝑁 )  ∈  ℕ0 ) | 
						
							| 2 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 3 |  | nn0re | ⊢ ( ( 𝑀  gcd  𝑁 )  ∈  ℕ0  →  ( 𝑀  gcd  𝑁 )  ∈  ℝ ) | 
						
							| 4 |  | nn0ge0 | ⊢ ( ( 𝑀  gcd  𝑁 )  ∈  ℕ0  →  0  ≤  ( 𝑀  gcd  𝑁 ) ) | 
						
							| 5 |  | leltne | ⊢ ( ( 0  ∈  ℝ  ∧  ( 𝑀  gcd  𝑁 )  ∈  ℝ  ∧  0  ≤  ( 𝑀  gcd  𝑁 ) )  →  ( 0  <  ( 𝑀  gcd  𝑁 )  ↔  ( 𝑀  gcd  𝑁 )  ≠  0 ) ) | 
						
							| 6 | 2 3 4 5 | mp3an2i | ⊢ ( ( 𝑀  gcd  𝑁 )  ∈  ℕ0  →  ( 0  <  ( 𝑀  gcd  𝑁 )  ↔  ( 𝑀  gcd  𝑁 )  ≠  0 ) ) | 
						
							| 7 | 1 6 | syl | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 0  <  ( 𝑀  gcd  𝑁 )  ↔  ( 𝑀  gcd  𝑁 )  ≠  0 ) ) | 
						
							| 8 |  | gcdeq0 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑀  gcd  𝑁 )  =  0  ↔  ( 𝑀  =  0  ∧  𝑁  =  0 ) ) ) | 
						
							| 9 | 8 | necon3abid | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑀  gcd  𝑁 )  ≠  0  ↔  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) ) ) | 
						
							| 10 | 7 9 | bitr2d | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ¬  ( 𝑀  =  0  ∧  𝑁  =  0 )  ↔  0  <  ( 𝑀  gcd  𝑁 ) ) ) |