| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vex |
⊢ 𝑥 ∈ V |
| 2 |
|
omex |
⊢ ω ∈ V |
| 3 |
1 2
|
unex |
⊢ ( 𝑥 ∪ ω ) ∈ V |
| 4 |
|
ssun2 |
⊢ ω ⊆ ( 𝑥 ∪ ω ) |
| 5 |
|
ssdomg |
⊢ ( ( 𝑥 ∪ ω ) ∈ V → ( ω ⊆ ( 𝑥 ∪ ω ) → ω ≼ ( 𝑥 ∪ ω ) ) ) |
| 6 |
3 4 5
|
mp2 |
⊢ ω ≼ ( 𝑥 ∪ ω ) |
| 7 |
|
id |
⊢ ( GCH = V → GCH = V ) |
| 8 |
3 7
|
eleqtrrid |
⊢ ( GCH = V → ( 𝑥 ∪ ω ) ∈ GCH ) |
| 9 |
3
|
pwex |
⊢ 𝒫 ( 𝑥 ∪ ω ) ∈ V |
| 10 |
9 7
|
eleqtrrid |
⊢ ( GCH = V → 𝒫 ( 𝑥 ∪ ω ) ∈ GCH ) |
| 11 |
|
gchacg |
⊢ ( ( ω ≼ ( 𝑥 ∪ ω ) ∧ ( 𝑥 ∪ ω ) ∈ GCH ∧ 𝒫 ( 𝑥 ∪ ω ) ∈ GCH ) → 𝒫 ( 𝑥 ∪ ω ) ∈ dom card ) |
| 12 |
6 8 10 11
|
mp3an2i |
⊢ ( GCH = V → 𝒫 ( 𝑥 ∪ ω ) ∈ dom card ) |
| 13 |
3
|
canth2 |
⊢ ( 𝑥 ∪ ω ) ≺ 𝒫 ( 𝑥 ∪ ω ) |
| 14 |
|
sdomdom |
⊢ ( ( 𝑥 ∪ ω ) ≺ 𝒫 ( 𝑥 ∪ ω ) → ( 𝑥 ∪ ω ) ≼ 𝒫 ( 𝑥 ∪ ω ) ) |
| 15 |
13 14
|
ax-mp |
⊢ ( 𝑥 ∪ ω ) ≼ 𝒫 ( 𝑥 ∪ ω ) |
| 16 |
|
numdom |
⊢ ( ( 𝒫 ( 𝑥 ∪ ω ) ∈ dom card ∧ ( 𝑥 ∪ ω ) ≼ 𝒫 ( 𝑥 ∪ ω ) ) → ( 𝑥 ∪ ω ) ∈ dom card ) |
| 17 |
12 15 16
|
sylancl |
⊢ ( GCH = V → ( 𝑥 ∪ ω ) ∈ dom card ) |
| 18 |
|
ssun1 |
⊢ 𝑥 ⊆ ( 𝑥 ∪ ω ) |
| 19 |
|
ssnum |
⊢ ( ( ( 𝑥 ∪ ω ) ∈ dom card ∧ 𝑥 ⊆ ( 𝑥 ∪ ω ) ) → 𝑥 ∈ dom card ) |
| 20 |
17 18 19
|
sylancl |
⊢ ( GCH = V → 𝑥 ∈ dom card ) |
| 21 |
1
|
a1i |
⊢ ( GCH = V → 𝑥 ∈ V ) |
| 22 |
20 21
|
2thd |
⊢ ( GCH = V → ( 𝑥 ∈ dom card ↔ 𝑥 ∈ V ) ) |
| 23 |
22
|
eqrdv |
⊢ ( GCH = V → dom card = V ) |
| 24 |
|
dfac10 |
⊢ ( CHOICE ↔ dom card = V ) |
| 25 |
23 24
|
sylibr |
⊢ ( GCH = V → CHOICE ) |