Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
⊢ 𝑥 ∈ V |
2 |
|
omex |
⊢ ω ∈ V |
3 |
1 2
|
unex |
⊢ ( 𝑥 ∪ ω ) ∈ V |
4 |
|
ssun2 |
⊢ ω ⊆ ( 𝑥 ∪ ω ) |
5 |
|
ssdomg |
⊢ ( ( 𝑥 ∪ ω ) ∈ V → ( ω ⊆ ( 𝑥 ∪ ω ) → ω ≼ ( 𝑥 ∪ ω ) ) ) |
6 |
3 4 5
|
mp2 |
⊢ ω ≼ ( 𝑥 ∪ ω ) |
7 |
|
id |
⊢ ( GCH = V → GCH = V ) |
8 |
3 7
|
eleqtrrid |
⊢ ( GCH = V → ( 𝑥 ∪ ω ) ∈ GCH ) |
9 |
3
|
pwex |
⊢ 𝒫 ( 𝑥 ∪ ω ) ∈ V |
10 |
9 7
|
eleqtrrid |
⊢ ( GCH = V → 𝒫 ( 𝑥 ∪ ω ) ∈ GCH ) |
11 |
|
gchacg |
⊢ ( ( ω ≼ ( 𝑥 ∪ ω ) ∧ ( 𝑥 ∪ ω ) ∈ GCH ∧ 𝒫 ( 𝑥 ∪ ω ) ∈ GCH ) → 𝒫 ( 𝑥 ∪ ω ) ∈ dom card ) |
12 |
6 8 10 11
|
mp3an2i |
⊢ ( GCH = V → 𝒫 ( 𝑥 ∪ ω ) ∈ dom card ) |
13 |
3
|
canth2 |
⊢ ( 𝑥 ∪ ω ) ≺ 𝒫 ( 𝑥 ∪ ω ) |
14 |
|
sdomdom |
⊢ ( ( 𝑥 ∪ ω ) ≺ 𝒫 ( 𝑥 ∪ ω ) → ( 𝑥 ∪ ω ) ≼ 𝒫 ( 𝑥 ∪ ω ) ) |
15 |
13 14
|
ax-mp |
⊢ ( 𝑥 ∪ ω ) ≼ 𝒫 ( 𝑥 ∪ ω ) |
16 |
|
numdom |
⊢ ( ( 𝒫 ( 𝑥 ∪ ω ) ∈ dom card ∧ ( 𝑥 ∪ ω ) ≼ 𝒫 ( 𝑥 ∪ ω ) ) → ( 𝑥 ∪ ω ) ∈ dom card ) |
17 |
12 15 16
|
sylancl |
⊢ ( GCH = V → ( 𝑥 ∪ ω ) ∈ dom card ) |
18 |
|
ssun1 |
⊢ 𝑥 ⊆ ( 𝑥 ∪ ω ) |
19 |
|
ssnum |
⊢ ( ( ( 𝑥 ∪ ω ) ∈ dom card ∧ 𝑥 ⊆ ( 𝑥 ∪ ω ) ) → 𝑥 ∈ dom card ) |
20 |
17 18 19
|
sylancl |
⊢ ( GCH = V → 𝑥 ∈ dom card ) |
21 |
1
|
a1i |
⊢ ( GCH = V → 𝑥 ∈ V ) |
22 |
20 21
|
2thd |
⊢ ( GCH = V → ( 𝑥 ∈ dom card ↔ 𝑥 ∈ V ) ) |
23 |
22
|
eqrdv |
⊢ ( GCH = V → dom card = V ) |
24 |
|
dfac10 |
⊢ ( CHOICE ↔ dom card = V ) |
25 |
23 24
|
sylibr |
⊢ ( GCH = V → CHOICE ) |