Metamath Proof Explorer


Theorem gchacg

Description: A "local" form of gchac . If A and ~P A are GCH-sets, then ~P A is well-orderable. The proof is due to Specker. Theorem 2.1 of KanamoriPincus p. 419. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion gchacg ( ( ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → 𝒫 𝐴 ∈ dom card )

Proof

Step Hyp Ref Expression
1 harcl ( har ‘ 𝐴 ) ∈ On
2 gchhar ( ( ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 )
3 isnumi ( ( ( har ‘ 𝐴 ) ∈ On ∧ ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 ) → 𝒫 𝐴 ∈ dom card )
4 1 2 3 sylancr ( ( ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → 𝒫 𝐴 ∈ dom card )