| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1onn | ⊢ 1o  ∈  ω | 
						
							| 2 | 1 | a1i | ⊢ ( ¬  𝐴  ∈  Fin  →  1o  ∈  ω ) | 
						
							| 3 |  | djudoml | ⊢ ( ( 𝐴  ∈  GCH  ∧  1o  ∈  ω )  →  𝐴  ≼  ( 𝐴  ⊔  1o ) ) | 
						
							| 4 | 2 3 | sylan2 | ⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  𝐴  ≼  ( 𝐴  ⊔  1o ) ) | 
						
							| 5 |  | simpr | ⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  ¬  𝐴  ∈  Fin ) | 
						
							| 6 |  | nnfi | ⊢ ( 1o  ∈  ω  →  1o  ∈  Fin ) | 
						
							| 7 | 1 6 | mp1i | ⊢ ( ¬  𝐴  ∈  Fin  →  1o  ∈  Fin ) | 
						
							| 8 |  | fidomtri2 | ⊢ ( ( 𝐴  ∈  GCH  ∧  1o  ∈  Fin )  →  ( 𝐴  ≼  1o  ↔  ¬  1o  ≺  𝐴 ) ) | 
						
							| 9 | 7 8 | sylan2 | ⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  ( 𝐴  ≼  1o  ↔  ¬  1o  ≺  𝐴 ) ) | 
						
							| 10 | 1 6 | mp1i | ⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  1o  ∈  Fin ) | 
						
							| 11 |  | domfi | ⊢ ( ( 1o  ∈  Fin  ∧  𝐴  ≼  1o )  →  𝐴  ∈  Fin ) | 
						
							| 12 | 11 | ex | ⊢ ( 1o  ∈  Fin  →  ( 𝐴  ≼  1o  →  𝐴  ∈  Fin ) ) | 
						
							| 13 | 10 12 | syl | ⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  ( 𝐴  ≼  1o  →  𝐴  ∈  Fin ) ) | 
						
							| 14 | 9 13 | sylbird | ⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  ( ¬  1o  ≺  𝐴  →  𝐴  ∈  Fin ) ) | 
						
							| 15 | 5 14 | mt3d | ⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  1o  ≺  𝐴 ) | 
						
							| 16 |  | canthp1 | ⊢ ( 1o  ≺  𝐴  →  ( 𝐴  ⊔  1o )  ≺  𝒫  𝐴 ) | 
						
							| 17 | 15 16 | syl | ⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  ( 𝐴  ⊔  1o )  ≺  𝒫  𝐴 ) | 
						
							| 18 | 4 17 | jca | ⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  ( 𝐴  ≼  ( 𝐴  ⊔  1o )  ∧  ( 𝐴  ⊔  1o )  ≺  𝒫  𝐴 ) ) | 
						
							| 19 |  | gchen1 | ⊢ ( ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  ∧  ( 𝐴  ≼  ( 𝐴  ⊔  1o )  ∧  ( 𝐴  ⊔  1o )  ≺  𝒫  𝐴 ) )  →  𝐴  ≈  ( 𝐴  ⊔  1o ) ) | 
						
							| 20 | 18 19 | mpdan | ⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  𝐴  ≈  ( 𝐴  ⊔  1o ) ) | 
						
							| 21 | 20 | ensymd | ⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  ( 𝐴  ⊔  1o )  ≈  𝐴 ) |