| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl | ⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  𝐴  ∈  GCH ) | 
						
							| 2 |  | djudoml | ⊢ ( ( 𝐴  ∈  GCH  ∧  𝐴  ∈  GCH )  →  𝐴  ≼  ( 𝐴  ⊔  𝐴 ) ) | 
						
							| 3 | 1 1 2 | syl2anc | ⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  𝐴  ≼  ( 𝐴  ⊔  𝐴 ) ) | 
						
							| 4 |  | canth2g | ⊢ ( 𝐴  ∈  GCH  →  𝐴  ≺  𝒫  𝐴 ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  𝐴  ≺  𝒫  𝐴 ) | 
						
							| 6 |  | sdomdom | ⊢ ( 𝐴  ≺  𝒫  𝐴  →  𝐴  ≼  𝒫  𝐴 ) | 
						
							| 7 | 5 6 | syl | ⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  𝐴  ≼  𝒫  𝐴 ) | 
						
							| 8 |  | reldom | ⊢ Rel   ≼ | 
						
							| 9 | 8 | brrelex1i | ⊢ ( 𝐴  ≼  𝒫  𝐴  →  𝐴  ∈  V ) | 
						
							| 10 |  | djudom1 | ⊢ ( ( 𝐴  ≼  𝒫  𝐴  ∧  𝐴  ∈  V )  →  ( 𝐴  ⊔  𝐴 )  ≼  ( 𝒫  𝐴  ⊔  𝐴 ) ) | 
						
							| 11 | 9 10 | mpdan | ⊢ ( 𝐴  ≼  𝒫  𝐴  →  ( 𝐴  ⊔  𝐴 )  ≼  ( 𝒫  𝐴  ⊔  𝐴 ) ) | 
						
							| 12 | 9 | pwexd | ⊢ ( 𝐴  ≼  𝒫  𝐴  →  𝒫  𝐴  ∈  V ) | 
						
							| 13 |  | djudom2 | ⊢ ( ( 𝐴  ≼  𝒫  𝐴  ∧  𝒫  𝐴  ∈  V )  →  ( 𝒫  𝐴  ⊔  𝐴 )  ≼  ( 𝒫  𝐴  ⊔  𝒫  𝐴 ) ) | 
						
							| 14 | 12 13 | mpdan | ⊢ ( 𝐴  ≼  𝒫  𝐴  →  ( 𝒫  𝐴  ⊔  𝐴 )  ≼  ( 𝒫  𝐴  ⊔  𝒫  𝐴 ) ) | 
						
							| 15 |  | domtr | ⊢ ( ( ( 𝐴  ⊔  𝐴 )  ≼  ( 𝒫  𝐴  ⊔  𝐴 )  ∧  ( 𝒫  𝐴  ⊔  𝐴 )  ≼  ( 𝒫  𝐴  ⊔  𝒫  𝐴 ) )  →  ( 𝐴  ⊔  𝐴 )  ≼  ( 𝒫  𝐴  ⊔  𝒫  𝐴 ) ) | 
						
							| 16 | 11 14 15 | syl2anc | ⊢ ( 𝐴  ≼  𝒫  𝐴  →  ( 𝐴  ⊔  𝐴 )  ≼  ( 𝒫  𝐴  ⊔  𝒫  𝐴 ) ) | 
						
							| 17 | 7 16 | syl | ⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  ( 𝐴  ⊔  𝐴 )  ≼  ( 𝒫  𝐴  ⊔  𝒫  𝐴 ) ) | 
						
							| 18 |  | pwdju1 | ⊢ ( 𝐴  ∈  GCH  →  ( 𝒫  𝐴  ⊔  𝒫  𝐴 )  ≈  𝒫  ( 𝐴  ⊔  1o ) ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  ( 𝒫  𝐴  ⊔  𝒫  𝐴 )  ≈  𝒫  ( 𝐴  ⊔  1o ) ) | 
						
							| 20 |  | gchdju1 | ⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  ( 𝐴  ⊔  1o )  ≈  𝐴 ) | 
						
							| 21 |  | pwen | ⊢ ( ( 𝐴  ⊔  1o )  ≈  𝐴  →  𝒫  ( 𝐴  ⊔  1o )  ≈  𝒫  𝐴 ) | 
						
							| 22 | 20 21 | syl | ⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  𝒫  ( 𝐴  ⊔  1o )  ≈  𝒫  𝐴 ) | 
						
							| 23 |  | entr | ⊢ ( ( ( 𝒫  𝐴  ⊔  𝒫  𝐴 )  ≈  𝒫  ( 𝐴  ⊔  1o )  ∧  𝒫  ( 𝐴  ⊔  1o )  ≈  𝒫  𝐴 )  →  ( 𝒫  𝐴  ⊔  𝒫  𝐴 )  ≈  𝒫  𝐴 ) | 
						
							| 24 | 19 22 23 | syl2anc | ⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  ( 𝒫  𝐴  ⊔  𝒫  𝐴 )  ≈  𝒫  𝐴 ) | 
						
							| 25 |  | domentr | ⊢ ( ( ( 𝐴  ⊔  𝐴 )  ≼  ( 𝒫  𝐴  ⊔  𝒫  𝐴 )  ∧  ( 𝒫  𝐴  ⊔  𝒫  𝐴 )  ≈  𝒫  𝐴 )  →  ( 𝐴  ⊔  𝐴 )  ≼  𝒫  𝐴 ) | 
						
							| 26 | 17 24 25 | syl2anc | ⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  ( 𝐴  ⊔  𝐴 )  ≼  𝒫  𝐴 ) | 
						
							| 27 |  | gchinf | ⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  ω  ≼  𝐴 ) | 
						
							| 28 |  | pwdjundom | ⊢ ( ω  ≼  𝐴  →  ¬  𝒫  𝐴  ≼  ( 𝐴  ⊔  𝐴 ) ) | 
						
							| 29 | 27 28 | syl | ⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  ¬  𝒫  𝐴  ≼  ( 𝐴  ⊔  𝐴 ) ) | 
						
							| 30 |  | ensym | ⊢ ( ( 𝐴  ⊔  𝐴 )  ≈  𝒫  𝐴  →  𝒫  𝐴  ≈  ( 𝐴  ⊔  𝐴 ) ) | 
						
							| 31 |  | endom | ⊢ ( 𝒫  𝐴  ≈  ( 𝐴  ⊔  𝐴 )  →  𝒫  𝐴  ≼  ( 𝐴  ⊔  𝐴 ) ) | 
						
							| 32 | 30 31 | syl | ⊢ ( ( 𝐴  ⊔  𝐴 )  ≈  𝒫  𝐴  →  𝒫  𝐴  ≼  ( 𝐴  ⊔  𝐴 ) ) | 
						
							| 33 | 29 32 | nsyl | ⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  ¬  ( 𝐴  ⊔  𝐴 )  ≈  𝒫  𝐴 ) | 
						
							| 34 |  | brsdom | ⊢ ( ( 𝐴  ⊔  𝐴 )  ≺  𝒫  𝐴  ↔  ( ( 𝐴  ⊔  𝐴 )  ≼  𝒫  𝐴  ∧  ¬  ( 𝐴  ⊔  𝐴 )  ≈  𝒫  𝐴 ) ) | 
						
							| 35 | 26 33 34 | sylanbrc | ⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  ( 𝐴  ⊔  𝐴 )  ≺  𝒫  𝐴 ) | 
						
							| 36 | 3 35 | jca | ⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  ( 𝐴  ≼  ( 𝐴  ⊔  𝐴 )  ∧  ( 𝐴  ⊔  𝐴 )  ≺  𝒫  𝐴 ) ) | 
						
							| 37 |  | gchen1 | ⊢ ( ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  ∧  ( 𝐴  ≼  ( 𝐴  ⊔  𝐴 )  ∧  ( 𝐴  ⊔  𝐴 )  ≺  𝒫  𝐴 ) )  →  𝐴  ≈  ( 𝐴  ⊔  𝐴 ) ) | 
						
							| 38 | 36 37 | mpdan | ⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  𝐴  ≈  ( 𝐴  ⊔  𝐴 ) ) | 
						
							| 39 | 38 | ensymd | ⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  ( 𝐴  ⊔  𝐴 )  ≈  𝐴 ) |