| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sdomdom |
⊢ ( 𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵 ) |
| 2 |
1
|
con3i |
⊢ ( ¬ 𝐴 ≼ 𝐵 → ¬ 𝐴 ≺ 𝐵 ) |
| 3 |
|
reldom |
⊢ Rel ≼ |
| 4 |
3
|
brrelex1i |
⊢ ( 𝐵 ≼ 𝒫 𝐴 → 𝐵 ∈ V ) |
| 5 |
4
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → 𝐵 ∈ V ) |
| 6 |
|
fidomtri2 |
⊢ ( ( 𝐵 ∈ V ∧ 𝐴 ∈ Fin ) → ( 𝐵 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 𝐵 ) ) |
| 7 |
5 6
|
sylan |
⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ 𝐴 ∈ Fin ) → ( 𝐵 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 𝐵 ) ) |
| 8 |
2 7
|
imbitrrid |
⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ 𝐴 ∈ Fin ) → ( ¬ 𝐴 ≼ 𝐵 → 𝐵 ≼ 𝐴 ) ) |
| 9 |
8
|
orrd |
⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ 𝐴 ∈ Fin ) → ( 𝐴 ≼ 𝐵 ∨ 𝐵 ≼ 𝐴 ) ) |
| 10 |
|
simp1 |
⊢ ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → 𝐴 ∈ GCH ) |
| 11 |
10
|
adantr |
⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ ¬ 𝐴 ∈ Fin ) → 𝐴 ∈ GCH ) |
| 12 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ ¬ 𝐴 ∈ Fin ) → ¬ 𝐴 ∈ Fin ) |
| 13 |
|
djudoml |
⊢ ( ( 𝐴 ∈ GCH ∧ 𝐵 ∈ V ) → 𝐴 ≼ ( 𝐴 ⊔ 𝐵 ) ) |
| 14 |
10 5 13
|
syl2anc |
⊢ ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → 𝐴 ≼ ( 𝐴 ⊔ 𝐵 ) ) |
| 15 |
14
|
adantr |
⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ ¬ 𝐴 ∈ Fin ) → 𝐴 ≼ ( 𝐴 ⊔ 𝐵 ) ) |
| 16 |
|
djulepw |
⊢ ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ 𝒫 𝐴 ) |
| 17 |
16
|
3adant1 |
⊢ ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ 𝒫 𝐴 ) |
| 18 |
17
|
adantr |
⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 ⊔ 𝐵 ) ≼ 𝒫 𝐴 ) |
| 19 |
|
gchor |
⊢ ( ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝐴 ≼ ( 𝐴 ⊔ 𝐵 ) ∧ ( 𝐴 ⊔ 𝐵 ) ≼ 𝒫 𝐴 ) ) → ( 𝐴 ≈ ( 𝐴 ⊔ 𝐵 ) ∨ ( 𝐴 ⊔ 𝐵 ) ≈ 𝒫 𝐴 ) ) |
| 20 |
11 12 15 18 19
|
syl22anc |
⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 ≈ ( 𝐴 ⊔ 𝐵 ) ∨ ( 𝐴 ⊔ 𝐵 ) ≈ 𝒫 𝐴 ) ) |
| 21 |
|
djudoml |
⊢ ( ( 𝐵 ∈ V ∧ 𝐴 ∈ GCH ) → 𝐵 ≼ ( 𝐵 ⊔ 𝐴 ) ) |
| 22 |
5 10 21
|
syl2anc |
⊢ ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → 𝐵 ≼ ( 𝐵 ⊔ 𝐴 ) ) |
| 23 |
|
djucomen |
⊢ ( ( 𝐵 ∈ V ∧ 𝐴 ∈ GCH ) → ( 𝐵 ⊔ 𝐴 ) ≈ ( 𝐴 ⊔ 𝐵 ) ) |
| 24 |
5 10 23
|
syl2anc |
⊢ ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( 𝐵 ⊔ 𝐴 ) ≈ ( 𝐴 ⊔ 𝐵 ) ) |
| 25 |
|
domentr |
⊢ ( ( 𝐵 ≼ ( 𝐵 ⊔ 𝐴 ) ∧ ( 𝐵 ⊔ 𝐴 ) ≈ ( 𝐴 ⊔ 𝐵 ) ) → 𝐵 ≼ ( 𝐴 ⊔ 𝐵 ) ) |
| 26 |
22 24 25
|
syl2anc |
⊢ ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → 𝐵 ≼ ( 𝐴 ⊔ 𝐵 ) ) |
| 27 |
|
domen2 |
⊢ ( 𝐴 ≈ ( 𝐴 ⊔ 𝐵 ) → ( 𝐵 ≼ 𝐴 ↔ 𝐵 ≼ ( 𝐴 ⊔ 𝐵 ) ) ) |
| 28 |
26 27
|
syl5ibrcom |
⊢ ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( 𝐴 ≈ ( 𝐴 ⊔ 𝐵 ) → 𝐵 ≼ 𝐴 ) ) |
| 29 |
28
|
imp |
⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ 𝐴 ≈ ( 𝐴 ⊔ 𝐵 ) ) → 𝐵 ≼ 𝐴 ) |
| 30 |
29
|
olcd |
⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ 𝐴 ≈ ( 𝐴 ⊔ 𝐵 ) ) → ( 𝐴 ≼ 𝐵 ∨ 𝐵 ≼ 𝐴 ) ) |
| 31 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ ( 𝐴 ⊔ 𝐵 ) ≈ 𝒫 𝐴 ) → 𝐴 ∈ GCH ) |
| 32 |
|
canth2g |
⊢ ( 𝐴 ∈ GCH → 𝐴 ≺ 𝒫 𝐴 ) |
| 33 |
|
sdomdom |
⊢ ( 𝐴 ≺ 𝒫 𝐴 → 𝐴 ≼ 𝒫 𝐴 ) |
| 34 |
31 32 33
|
3syl |
⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ ( 𝐴 ⊔ 𝐵 ) ≈ 𝒫 𝐴 ) → 𝐴 ≼ 𝒫 𝐴 ) |
| 35 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ ( 𝐴 ⊔ 𝐵 ) ≈ 𝒫 𝐴 ) → ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ) |
| 36 |
|
pwen |
⊢ ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 → 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ 𝒫 𝐴 ) |
| 37 |
35 36
|
syl |
⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ ( 𝐴 ⊔ 𝐵 ) ≈ 𝒫 𝐴 ) → 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ 𝒫 𝐴 ) |
| 38 |
|
enen2 |
⊢ ( ( 𝐴 ⊔ 𝐵 ) ≈ 𝒫 𝐴 → ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ ( 𝐴 ⊔ 𝐵 ) ↔ 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ 𝒫 𝐴 ) ) |
| 39 |
38
|
adantl |
⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ ( 𝐴 ⊔ 𝐵 ) ≈ 𝒫 𝐴 ) → ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ ( 𝐴 ⊔ 𝐵 ) ↔ 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ 𝒫 𝐴 ) ) |
| 40 |
37 39
|
mpbird |
⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ ( 𝐴 ⊔ 𝐵 ) ≈ 𝒫 𝐴 ) → 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ ( 𝐴 ⊔ 𝐵 ) ) |
| 41 |
|
endom |
⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ ( 𝐴 ⊔ 𝐵 ) → 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) ) |
| 42 |
|
pwdjudom |
⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → 𝒫 𝐴 ≼ 𝐵 ) |
| 43 |
40 41 42
|
3syl |
⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ ( 𝐴 ⊔ 𝐵 ) ≈ 𝒫 𝐴 ) → 𝒫 𝐴 ≼ 𝐵 ) |
| 44 |
|
domtr |
⊢ ( ( 𝐴 ≼ 𝒫 𝐴 ∧ 𝒫 𝐴 ≼ 𝐵 ) → 𝐴 ≼ 𝐵 ) |
| 45 |
34 43 44
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ ( 𝐴 ⊔ 𝐵 ) ≈ 𝒫 𝐴 ) → 𝐴 ≼ 𝐵 ) |
| 46 |
45
|
orcd |
⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ ( 𝐴 ⊔ 𝐵 ) ≈ 𝒫 𝐴 ) → ( 𝐴 ≼ 𝐵 ∨ 𝐵 ≼ 𝐴 ) ) |
| 47 |
30 46
|
jaodan |
⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ ( 𝐴 ≈ ( 𝐴 ⊔ 𝐵 ) ∨ ( 𝐴 ⊔ 𝐵 ) ≈ 𝒫 𝐴 ) ) → ( 𝐴 ≼ 𝐵 ∨ 𝐵 ≼ 𝐴 ) ) |
| 48 |
20 47
|
syldan |
⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 ≼ 𝐵 ∨ 𝐵 ≼ 𝐴 ) ) |
| 49 |
9 48
|
pm2.61dan |
⊢ ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( 𝐴 ≼ 𝐵 ∨ 𝐵 ≼ 𝐴 ) ) |