Metamath Proof Explorer


Theorem gchen1

Description: If A <_ B < ~P A , and A is an infinite GCH-set, then A = B in cardinality. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion gchen1 ( ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝐴𝐵𝐵 ≺ 𝒫 𝐴 ) ) → 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 simprl ( ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝐴𝐵𝐵 ≺ 𝒫 𝐴 ) ) → 𝐴𝐵 )
2 gchi ( ( 𝐴 ∈ GCH ∧ 𝐴𝐵𝐵 ≺ 𝒫 𝐴 ) → 𝐴 ∈ Fin )
3 2 3com23 ( ( 𝐴 ∈ GCH ∧ 𝐵 ≺ 𝒫 𝐴𝐴𝐵 ) → 𝐴 ∈ Fin )
4 3 3expia ( ( 𝐴 ∈ GCH ∧ 𝐵 ≺ 𝒫 𝐴 ) → ( 𝐴𝐵𝐴 ∈ Fin ) )
5 4 con3dimp ( ( ( 𝐴 ∈ GCH ∧ 𝐵 ≺ 𝒫 𝐴 ) ∧ ¬ 𝐴 ∈ Fin ) → ¬ 𝐴𝐵 )
6 5 an32s ( ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ≺ 𝒫 𝐴 ) → ¬ 𝐴𝐵 )
7 6 adantrl ( ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝐴𝐵𝐵 ≺ 𝒫 𝐴 ) ) → ¬ 𝐴𝐵 )
8 bren2 ( 𝐴𝐵 ↔ ( 𝐴𝐵 ∧ ¬ 𝐴𝐵 ) )
9 1 7 8 sylanbrc ( ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝐴𝐵𝐵 ≺ 𝒫 𝐴 ) ) → 𝐴𝐵 )