Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) → 𝑥 ∈ Inaccw ) |
2 |
|
idd |
⊢ ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) → ( 𝑥 ≠ ∅ → 𝑥 ≠ ∅ ) ) |
3 |
|
idd |
⊢ ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) → ( ( cf ‘ 𝑥 ) = 𝑥 → ( cf ‘ 𝑥 ) = 𝑥 ) ) |
4 |
|
pwfi |
⊢ ( 𝑦 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin ) |
5 |
|
isfinite |
⊢ ( 𝒫 𝑦 ∈ Fin ↔ 𝒫 𝑦 ≺ ω ) |
6 |
|
winainf |
⊢ ( 𝑥 ∈ Inaccw → ω ⊆ 𝑥 ) |
7 |
|
ssdomg |
⊢ ( 𝑥 ∈ Inaccw → ( ω ⊆ 𝑥 → ω ≼ 𝑥 ) ) |
8 |
6 7
|
mpd |
⊢ ( 𝑥 ∈ Inaccw → ω ≼ 𝑥 ) |
9 |
|
sdomdomtr |
⊢ ( ( 𝒫 𝑦 ≺ ω ∧ ω ≼ 𝑥 ) → 𝒫 𝑦 ≺ 𝑥 ) |
10 |
9
|
expcom |
⊢ ( ω ≼ 𝑥 → ( 𝒫 𝑦 ≺ ω → 𝒫 𝑦 ≺ 𝑥 ) ) |
11 |
8 10
|
syl |
⊢ ( 𝑥 ∈ Inaccw → ( 𝒫 𝑦 ≺ ω → 𝒫 𝑦 ≺ 𝑥 ) ) |
12 |
5 11
|
syl5bi |
⊢ ( 𝑥 ∈ Inaccw → ( 𝒫 𝑦 ∈ Fin → 𝒫 𝑦 ≺ 𝑥 ) ) |
13 |
4 12
|
syl5bi |
⊢ ( 𝑥 ∈ Inaccw → ( 𝑦 ∈ Fin → 𝒫 𝑦 ≺ 𝑥 ) ) |
14 |
13
|
ad3antlr |
⊢ ( ( ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ 𝑥 ) → ( 𝑦 ∈ Fin → 𝒫 𝑦 ≺ 𝑥 ) ) |
15 |
14
|
a1dd |
⊢ ( ( ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ 𝑥 ) → ( 𝑦 ∈ Fin → ( 𝑦 ≺ 𝑧 → 𝒫 𝑦 ≺ 𝑥 ) ) ) |
16 |
|
vex |
⊢ 𝑦 ∈ V |
17 |
|
simplll |
⊢ ( ( ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑦 ∈ Fin ) ) → GCH = V ) |
18 |
16 17
|
eleqtrrid |
⊢ ( ( ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑦 ∈ Fin ) ) → 𝑦 ∈ GCH ) |
19 |
|
simprr |
⊢ ( ( ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑦 ∈ Fin ) ) → ¬ 𝑦 ∈ Fin ) |
20 |
|
gchinf |
⊢ ( ( 𝑦 ∈ GCH ∧ ¬ 𝑦 ∈ Fin ) → ω ≼ 𝑦 ) |
21 |
18 19 20
|
syl2anc |
⊢ ( ( ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑦 ∈ Fin ) ) → ω ≼ 𝑦 ) |
22 |
|
vex |
⊢ 𝑧 ∈ V |
23 |
22 17
|
eleqtrrid |
⊢ ( ( ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑦 ∈ Fin ) ) → 𝑧 ∈ GCH ) |
24 |
|
gchpwdom |
⊢ ( ( ω ≼ 𝑦 ∧ 𝑦 ∈ GCH ∧ 𝑧 ∈ GCH ) → ( 𝑦 ≺ 𝑧 ↔ 𝒫 𝑦 ≼ 𝑧 ) ) |
25 |
21 18 23 24
|
syl3anc |
⊢ ( ( ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑦 ∈ Fin ) ) → ( 𝑦 ≺ 𝑧 ↔ 𝒫 𝑦 ≼ 𝑧 ) ) |
26 |
|
winacard |
⊢ ( 𝑥 ∈ Inaccw → ( card ‘ 𝑥 ) = 𝑥 ) |
27 |
|
iscard |
⊢ ( ( card ‘ 𝑥 ) = 𝑥 ↔ ( 𝑥 ∈ On ∧ ∀ 𝑧 ∈ 𝑥 𝑧 ≺ 𝑥 ) ) |
28 |
27
|
simprbi |
⊢ ( ( card ‘ 𝑥 ) = 𝑥 → ∀ 𝑧 ∈ 𝑥 𝑧 ≺ 𝑥 ) |
29 |
26 28
|
syl |
⊢ ( 𝑥 ∈ Inaccw → ∀ 𝑧 ∈ 𝑥 𝑧 ≺ 𝑥 ) |
30 |
29
|
ad2antlr |
⊢ ( ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) ∧ 𝑦 ∈ 𝑥 ) → ∀ 𝑧 ∈ 𝑥 𝑧 ≺ 𝑥 ) |
31 |
30
|
r19.21bi |
⊢ ( ( ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ 𝑥 ) → 𝑧 ≺ 𝑥 ) |
32 |
|
domsdomtr |
⊢ ( ( 𝒫 𝑦 ≼ 𝑧 ∧ 𝑧 ≺ 𝑥 ) → 𝒫 𝑦 ≺ 𝑥 ) |
33 |
32
|
expcom |
⊢ ( 𝑧 ≺ 𝑥 → ( 𝒫 𝑦 ≼ 𝑧 → 𝒫 𝑦 ≺ 𝑥 ) ) |
34 |
31 33
|
syl |
⊢ ( ( ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ 𝑥 ) → ( 𝒫 𝑦 ≼ 𝑧 → 𝒫 𝑦 ≺ 𝑥 ) ) |
35 |
34
|
adantrr |
⊢ ( ( ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑦 ∈ Fin ) ) → ( 𝒫 𝑦 ≼ 𝑧 → 𝒫 𝑦 ≺ 𝑥 ) ) |
36 |
25 35
|
sylbid |
⊢ ( ( ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑦 ∈ Fin ) ) → ( 𝑦 ≺ 𝑧 → 𝒫 𝑦 ≺ 𝑥 ) ) |
37 |
36
|
expr |
⊢ ( ( ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ 𝑥 ) → ( ¬ 𝑦 ∈ Fin → ( 𝑦 ≺ 𝑧 → 𝒫 𝑦 ≺ 𝑥 ) ) ) |
38 |
15 37
|
pm2.61d |
⊢ ( ( ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ 𝑥 ) → ( 𝑦 ≺ 𝑧 → 𝒫 𝑦 ≺ 𝑥 ) ) |
39 |
38
|
rexlimdva |
⊢ ( ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) ∧ 𝑦 ∈ 𝑥 ) → ( ∃ 𝑧 ∈ 𝑥 𝑦 ≺ 𝑧 → 𝒫 𝑦 ≺ 𝑥 ) ) |
40 |
39
|
ralimdva |
⊢ ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) → ( ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑥 𝑦 ≺ 𝑧 → ∀ 𝑦 ∈ 𝑥 𝒫 𝑦 ≺ 𝑥 ) ) |
41 |
2 3 40
|
3anim123d |
⊢ ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) → ( ( 𝑥 ≠ ∅ ∧ ( cf ‘ 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑥 𝑦 ≺ 𝑧 ) → ( 𝑥 ≠ ∅ ∧ ( cf ‘ 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 𝒫 𝑦 ≺ 𝑥 ) ) ) |
42 |
|
elwina |
⊢ ( 𝑥 ∈ Inaccw ↔ ( 𝑥 ≠ ∅ ∧ ( cf ‘ 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑥 𝑦 ≺ 𝑧 ) ) |
43 |
|
elina |
⊢ ( 𝑥 ∈ Inacc ↔ ( 𝑥 ≠ ∅ ∧ ( cf ‘ 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 𝒫 𝑦 ≺ 𝑥 ) ) |
44 |
41 42 43
|
3imtr4g |
⊢ ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) → ( 𝑥 ∈ Inaccw → 𝑥 ∈ Inacc ) ) |
45 |
1 44
|
mpd |
⊢ ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) → 𝑥 ∈ Inacc ) |
46 |
45
|
ex |
⊢ ( GCH = V → ( 𝑥 ∈ Inaccw → 𝑥 ∈ Inacc ) ) |
47 |
|
inawina |
⊢ ( 𝑥 ∈ Inacc → 𝑥 ∈ Inaccw ) |
48 |
46 47
|
impbid1 |
⊢ ( GCH = V → ( 𝑥 ∈ Inaccw ↔ 𝑥 ∈ Inacc ) ) |
49 |
48
|
eqrdv |
⊢ ( GCH = V → Inaccw = Inacc ) |