| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							simpr | 
							⊢ ( ( GCH  =  V  ∧  𝑥  ∈  Inaccw )  →  𝑥  ∈  Inaccw )  | 
						
						
							| 2 | 
							
								
							 | 
							idd | 
							⊢ ( ( GCH  =  V  ∧  𝑥  ∈  Inaccw )  →  ( 𝑥  ≠  ∅  →  𝑥  ≠  ∅ ) )  | 
						
						
							| 3 | 
							
								
							 | 
							idd | 
							⊢ ( ( GCH  =  V  ∧  𝑥  ∈  Inaccw )  →  ( ( cf ‘ 𝑥 )  =  𝑥  →  ( cf ‘ 𝑥 )  =  𝑥 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							pwfi | 
							⊢ ( 𝑦  ∈  Fin  ↔  𝒫  𝑦  ∈  Fin )  | 
						
						
							| 5 | 
							
								
							 | 
							isfinite | 
							⊢ ( 𝒫  𝑦  ∈  Fin  ↔  𝒫  𝑦  ≺  ω )  | 
						
						
							| 6 | 
							
								
							 | 
							winainf | 
							⊢ ( 𝑥  ∈  Inaccw  →  ω  ⊆  𝑥 )  | 
						
						
							| 7 | 
							
								
							 | 
							ssdomg | 
							⊢ ( 𝑥  ∈  Inaccw  →  ( ω  ⊆  𝑥  →  ω  ≼  𝑥 ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							mpd | 
							⊢ ( 𝑥  ∈  Inaccw  →  ω  ≼  𝑥 )  | 
						
						
							| 9 | 
							
								
							 | 
							sdomdomtr | 
							⊢ ( ( 𝒫  𝑦  ≺  ω  ∧  ω  ≼  𝑥 )  →  𝒫  𝑦  ≺  𝑥 )  | 
						
						
							| 10 | 
							
								9
							 | 
							expcom | 
							⊢ ( ω  ≼  𝑥  →  ( 𝒫  𝑦  ≺  ω  →  𝒫  𝑦  ≺  𝑥 ) )  | 
						
						
							| 11 | 
							
								8 10
							 | 
							syl | 
							⊢ ( 𝑥  ∈  Inaccw  →  ( 𝒫  𝑦  ≺  ω  →  𝒫  𝑦  ≺  𝑥 ) )  | 
						
						
							| 12 | 
							
								5 11
							 | 
							biimtrid | 
							⊢ ( 𝑥  ∈  Inaccw  →  ( 𝒫  𝑦  ∈  Fin  →  𝒫  𝑦  ≺  𝑥 ) )  | 
						
						
							| 13 | 
							
								4 12
							 | 
							biimtrid | 
							⊢ ( 𝑥  ∈  Inaccw  →  ( 𝑦  ∈  Fin  →  𝒫  𝑦  ≺  𝑥 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							ad3antlr | 
							⊢ ( ( ( ( GCH  =  V  ∧  𝑥  ∈  Inaccw )  ∧  𝑦  ∈  𝑥 )  ∧  𝑧  ∈  𝑥 )  →  ( 𝑦  ∈  Fin  →  𝒫  𝑦  ≺  𝑥 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							a1dd | 
							⊢ ( ( ( ( GCH  =  V  ∧  𝑥  ∈  Inaccw )  ∧  𝑦  ∈  𝑥 )  ∧  𝑧  ∈  𝑥 )  →  ( 𝑦  ∈  Fin  →  ( 𝑦  ≺  𝑧  →  𝒫  𝑦  ≺  𝑥 ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							vex | 
							⊢ 𝑦  ∈  V  | 
						
						
							| 17 | 
							
								
							 | 
							simplll | 
							⊢ ( ( ( ( GCH  =  V  ∧  𝑥  ∈  Inaccw )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑧  ∈  𝑥  ∧  ¬  𝑦  ∈  Fin ) )  →  GCH  =  V )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							eleqtrrid | 
							⊢ ( ( ( ( GCH  =  V  ∧  𝑥  ∈  Inaccw )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑧  ∈  𝑥  ∧  ¬  𝑦  ∈  Fin ) )  →  𝑦  ∈  GCH )  | 
						
						
							| 19 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( ( GCH  =  V  ∧  𝑥  ∈  Inaccw )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑧  ∈  𝑥  ∧  ¬  𝑦  ∈  Fin ) )  →  ¬  𝑦  ∈  Fin )  | 
						
						
							| 20 | 
							
								
							 | 
							gchinf | 
							⊢ ( ( 𝑦  ∈  GCH  ∧  ¬  𝑦  ∈  Fin )  →  ω  ≼  𝑦 )  | 
						
						
							| 21 | 
							
								18 19 20
							 | 
							syl2anc | 
							⊢ ( ( ( ( GCH  =  V  ∧  𝑥  ∈  Inaccw )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑧  ∈  𝑥  ∧  ¬  𝑦  ∈  Fin ) )  →  ω  ≼  𝑦 )  | 
						
						
							| 22 | 
							
								
							 | 
							vex | 
							⊢ 𝑧  ∈  V  | 
						
						
							| 23 | 
							
								22 17
							 | 
							eleqtrrid | 
							⊢ ( ( ( ( GCH  =  V  ∧  𝑥  ∈  Inaccw )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑧  ∈  𝑥  ∧  ¬  𝑦  ∈  Fin ) )  →  𝑧  ∈  GCH )  | 
						
						
							| 24 | 
							
								
							 | 
							gchpwdom | 
							⊢ ( ( ω  ≼  𝑦  ∧  𝑦  ∈  GCH  ∧  𝑧  ∈  GCH )  →  ( 𝑦  ≺  𝑧  ↔  𝒫  𝑦  ≼  𝑧 ) )  | 
						
						
							| 25 | 
							
								21 18 23 24
							 | 
							syl3anc | 
							⊢ ( ( ( ( GCH  =  V  ∧  𝑥  ∈  Inaccw )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑧  ∈  𝑥  ∧  ¬  𝑦  ∈  Fin ) )  →  ( 𝑦  ≺  𝑧  ↔  𝒫  𝑦  ≼  𝑧 ) )  | 
						
						
							| 26 | 
							
								
							 | 
							winacard | 
							⊢ ( 𝑥  ∈  Inaccw  →  ( card ‘ 𝑥 )  =  𝑥 )  | 
						
						
							| 27 | 
							
								
							 | 
							iscard | 
							⊢ ( ( card ‘ 𝑥 )  =  𝑥  ↔  ( 𝑥  ∈  On  ∧  ∀ 𝑧  ∈  𝑥 𝑧  ≺  𝑥 ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							simprbi | 
							⊢ ( ( card ‘ 𝑥 )  =  𝑥  →  ∀ 𝑧  ∈  𝑥 𝑧  ≺  𝑥 )  | 
						
						
							| 29 | 
							
								26 28
							 | 
							syl | 
							⊢ ( 𝑥  ∈  Inaccw  →  ∀ 𝑧  ∈  𝑥 𝑧  ≺  𝑥 )  | 
						
						
							| 30 | 
							
								29
							 | 
							ad2antlr | 
							⊢ ( ( ( GCH  =  V  ∧  𝑥  ∈  Inaccw )  ∧  𝑦  ∈  𝑥 )  →  ∀ 𝑧  ∈  𝑥 𝑧  ≺  𝑥 )  | 
						
						
							| 31 | 
							
								30
							 | 
							r19.21bi | 
							⊢ ( ( ( ( GCH  =  V  ∧  𝑥  ∈  Inaccw )  ∧  𝑦  ∈  𝑥 )  ∧  𝑧  ∈  𝑥 )  →  𝑧  ≺  𝑥 )  | 
						
						
							| 32 | 
							
								
							 | 
							domsdomtr | 
							⊢ ( ( 𝒫  𝑦  ≼  𝑧  ∧  𝑧  ≺  𝑥 )  →  𝒫  𝑦  ≺  𝑥 )  | 
						
						
							| 33 | 
							
								32
							 | 
							expcom | 
							⊢ ( 𝑧  ≺  𝑥  →  ( 𝒫  𝑦  ≼  𝑧  →  𝒫  𝑦  ≺  𝑥 ) )  | 
						
						
							| 34 | 
							
								31 33
							 | 
							syl | 
							⊢ ( ( ( ( GCH  =  V  ∧  𝑥  ∈  Inaccw )  ∧  𝑦  ∈  𝑥 )  ∧  𝑧  ∈  𝑥 )  →  ( 𝒫  𝑦  ≼  𝑧  →  𝒫  𝑦  ≺  𝑥 ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							adantrr | 
							⊢ ( ( ( ( GCH  =  V  ∧  𝑥  ∈  Inaccw )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑧  ∈  𝑥  ∧  ¬  𝑦  ∈  Fin ) )  →  ( 𝒫  𝑦  ≼  𝑧  →  𝒫  𝑦  ≺  𝑥 ) )  | 
						
						
							| 36 | 
							
								25 35
							 | 
							sylbid | 
							⊢ ( ( ( ( GCH  =  V  ∧  𝑥  ∈  Inaccw )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑧  ∈  𝑥  ∧  ¬  𝑦  ∈  Fin ) )  →  ( 𝑦  ≺  𝑧  →  𝒫  𝑦  ≺  𝑥 ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							expr | 
							⊢ ( ( ( ( GCH  =  V  ∧  𝑥  ∈  Inaccw )  ∧  𝑦  ∈  𝑥 )  ∧  𝑧  ∈  𝑥 )  →  ( ¬  𝑦  ∈  Fin  →  ( 𝑦  ≺  𝑧  →  𝒫  𝑦  ≺  𝑥 ) ) )  | 
						
						
							| 38 | 
							
								15 37
							 | 
							pm2.61d | 
							⊢ ( ( ( ( GCH  =  V  ∧  𝑥  ∈  Inaccw )  ∧  𝑦  ∈  𝑥 )  ∧  𝑧  ∈  𝑥 )  →  ( 𝑦  ≺  𝑧  →  𝒫  𝑦  ≺  𝑥 ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							rexlimdva | 
							⊢ ( ( ( GCH  =  V  ∧  𝑥  ∈  Inaccw )  ∧  𝑦  ∈  𝑥 )  →  ( ∃ 𝑧  ∈  𝑥 𝑦  ≺  𝑧  →  𝒫  𝑦  ≺  𝑥 ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							ralimdva | 
							⊢ ( ( GCH  =  V  ∧  𝑥  ∈  Inaccw )  →  ( ∀ 𝑦  ∈  𝑥 ∃ 𝑧  ∈  𝑥 𝑦  ≺  𝑧  →  ∀ 𝑦  ∈  𝑥 𝒫  𝑦  ≺  𝑥 ) )  | 
						
						
							| 41 | 
							
								2 3 40
							 | 
							3anim123d | 
							⊢ ( ( GCH  =  V  ∧  𝑥  ∈  Inaccw )  →  ( ( 𝑥  ≠  ∅  ∧  ( cf ‘ 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ∃ 𝑧  ∈  𝑥 𝑦  ≺  𝑧 )  →  ( 𝑥  ≠  ∅  ∧  ( cf ‘ 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  𝑥 𝒫  𝑦  ≺  𝑥 ) ) )  | 
						
						
							| 42 | 
							
								
							 | 
							elwina | 
							⊢ ( 𝑥  ∈  Inaccw  ↔  ( 𝑥  ≠  ∅  ∧  ( cf ‘ 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ∃ 𝑧  ∈  𝑥 𝑦  ≺  𝑧 ) )  | 
						
						
							| 43 | 
							
								
							 | 
							elina | 
							⊢ ( 𝑥  ∈  Inacc  ↔  ( 𝑥  ≠  ∅  ∧  ( cf ‘ 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  𝑥 𝒫  𝑦  ≺  𝑥 ) )  | 
						
						
							| 44 | 
							
								41 42 43
							 | 
							3imtr4g | 
							⊢ ( ( GCH  =  V  ∧  𝑥  ∈  Inaccw )  →  ( 𝑥  ∈  Inaccw  →  𝑥  ∈  Inacc ) )  | 
						
						
							| 45 | 
							
								1 44
							 | 
							mpd | 
							⊢ ( ( GCH  =  V  ∧  𝑥  ∈  Inaccw )  →  𝑥  ∈  Inacc )  | 
						
						
							| 46 | 
							
								45
							 | 
							ex | 
							⊢ ( GCH  =  V  →  ( 𝑥  ∈  Inaccw  →  𝑥  ∈  Inacc ) )  | 
						
						
							| 47 | 
							
								
							 | 
							inawina | 
							⊢ ( 𝑥  ∈  Inacc  →  𝑥  ∈  Inaccw )  | 
						
						
							| 48 | 
							
								46 47
							 | 
							impbid1 | 
							⊢ ( GCH  =  V  →  ( 𝑥  ∈  Inaccw  ↔  𝑥  ∈  Inacc ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							eqrdv | 
							⊢ ( GCH  =  V  →  Inaccw  =  Inacc )  |