| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gchdju1 |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 ⊔ 1o ) ≈ 𝐴 ) |
| 2 |
1
|
ensymd |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) |
| 3 |
|
isfin4-2 |
⊢ ( 𝐴 ∈ GCH → ( 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴 ) ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴 ) ) |
| 5 |
|
isfin4p1 |
⊢ ( 𝐴 ∈ FinIV ↔ 𝐴 ≺ ( 𝐴 ⊔ 1o ) ) |
| 6 |
|
sdomnen |
⊢ ( 𝐴 ≺ ( 𝐴 ⊔ 1o ) → ¬ 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) |
| 7 |
5 6
|
sylbi |
⊢ ( 𝐴 ∈ FinIV → ¬ 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) |
| 8 |
4 7
|
biimtrrdi |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( ¬ ω ≼ 𝐴 → ¬ 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) ) |
| 9 |
2 8
|
mt4d |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ω ≼ 𝐴 ) |