Metamath Proof Explorer


Theorem gchor

Description: If A <_ B <_ ~P A , and A is an infinite GCH-set, then either A = B or B = ~P A in cardinality. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion gchor ( ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝐴𝐵𝐵 ≼ 𝒫 𝐴 ) ) → ( 𝐴𝐵𝐵 ≈ 𝒫 𝐴 ) )

Proof

Step Hyp Ref Expression
1 simprr ( ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝐴𝐵𝐵 ≼ 𝒫 𝐴 ) ) → 𝐵 ≼ 𝒫 𝐴 )
2 brdom2 ( 𝐵 ≼ 𝒫 𝐴 ↔ ( 𝐵 ≺ 𝒫 𝐴𝐵 ≈ 𝒫 𝐴 ) )
3 1 2 sylib ( ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝐴𝐵𝐵 ≼ 𝒫 𝐴 ) ) → ( 𝐵 ≺ 𝒫 𝐴𝐵 ≈ 𝒫 𝐴 ) )
4 gchen1 ( ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝐴𝐵𝐵 ≺ 𝒫 𝐴 ) ) → 𝐴𝐵 )
5 4 expr ( ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐴𝐵 ) → ( 𝐵 ≺ 𝒫 𝐴𝐴𝐵 ) )
6 5 adantrr ( ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝐴𝐵𝐵 ≼ 𝒫 𝐴 ) ) → ( 𝐵 ≺ 𝒫 𝐴𝐴𝐵 ) )
7 6 orim1d ( ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝐴𝐵𝐵 ≼ 𝒫 𝐴 ) ) → ( ( 𝐵 ≺ 𝒫 𝐴𝐵 ≈ 𝒫 𝐴 ) → ( 𝐴𝐵𝐵 ≈ 𝒫 𝐴 ) ) )
8 3 7 mpd ( ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝐴𝐵𝐵 ≼ 𝒫 𝐴 ) ) → ( 𝐴𝐵𝐵 ≈ 𝒫 𝐴 ) )