| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl2 | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  𝐴  ∈  GCH ) | 
						
							| 2 | 1 | pwexd | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  𝒫  𝐴  ∈  V ) | 
						
							| 3 |  | simpl3 | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  𝐵  ∈  GCH ) | 
						
							| 4 |  | djudoml | ⊢ ( ( 𝒫  𝐴  ∈  V  ∧  𝐵  ∈  GCH )  →  𝒫  𝐴  ≼  ( 𝒫  𝐴  ⊔  𝐵 ) ) | 
						
							| 5 | 2 3 4 | syl2anc | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  𝒫  𝐴  ≼  ( 𝒫  𝐴  ⊔  𝐵 ) ) | 
						
							| 6 |  | domen2 | ⊢ ( 𝐵  ≈  ( 𝒫  𝐴  ⊔  𝐵 )  →  ( 𝒫  𝐴  ≼  𝐵  ↔  𝒫  𝐴  ≼  ( 𝒫  𝐴  ⊔  𝐵 ) ) ) | 
						
							| 7 | 5 6 | syl5ibrcom | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝐵  ≈  ( 𝒫  𝐴  ⊔  𝐵 )  →  𝒫  𝐴  ≼  𝐵 ) ) | 
						
							| 8 |  | djucomen | ⊢ ( ( 𝐵  ∈  GCH  ∧  𝒫  𝐴  ∈  V )  →  ( 𝐵  ⊔  𝒫  𝐴 )  ≈  ( 𝒫  𝐴  ⊔  𝐵 ) ) | 
						
							| 9 | 3 2 8 | syl2anc | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝐵  ⊔  𝒫  𝐴 )  ≈  ( 𝒫  𝐴  ⊔  𝐵 ) ) | 
						
							| 10 |  | entr | ⊢ ( ( ( 𝐵  ⊔  𝒫  𝐴 )  ≈  ( 𝒫  𝐴  ⊔  𝐵 )  ∧  ( 𝒫  𝐴  ⊔  𝐵 )  ≈  𝒫  𝐵 )  →  ( 𝐵  ⊔  𝒫  𝐴 )  ≈  𝒫  𝐵 ) | 
						
							| 11 | 10 | ex | ⊢ ( ( 𝐵  ⊔  𝒫  𝐴 )  ≈  ( 𝒫  𝐴  ⊔  𝐵 )  →  ( ( 𝒫  𝐴  ⊔  𝐵 )  ≈  𝒫  𝐵  →  ( 𝐵  ⊔  𝒫  𝐴 )  ≈  𝒫  𝐵 ) ) | 
						
							| 12 | 9 11 | syl | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( ( 𝒫  𝐴  ⊔  𝐵 )  ≈  𝒫  𝐵  →  ( 𝐵  ⊔  𝒫  𝐴 )  ≈  𝒫  𝐵 ) ) | 
						
							| 13 |  | ensym | ⊢ ( ( 𝐵  ⊔  𝒫  𝐴 )  ≈  𝒫  𝐵  →  𝒫  𝐵  ≈  ( 𝐵  ⊔  𝒫  𝐴 ) ) | 
						
							| 14 |  | endom | ⊢ ( 𝒫  𝐵  ≈  ( 𝐵  ⊔  𝒫  𝐴 )  →  𝒫  𝐵  ≼  ( 𝐵  ⊔  𝒫  𝐴 ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( 𝐵  ⊔  𝒫  𝐴 )  ≈  𝒫  𝐵  →  𝒫  𝐵  ≼  ( 𝐵  ⊔  𝒫  𝐴 ) ) | 
						
							| 16 | 12 15 | syl6 | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( ( 𝒫  𝐴  ⊔  𝐵 )  ≈  𝒫  𝐵  →  𝒫  𝐵  ≼  ( 𝐵  ⊔  𝒫  𝐴 ) ) ) | 
						
							| 17 |  | domsdomtr | ⊢ ( ( ω  ≼  𝐴  ∧  𝐴  ≺  𝐵 )  →  ω  ≺  𝐵 ) | 
						
							| 18 | 17 | 3ad2antl1 | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ω  ≺  𝐵 ) | 
						
							| 19 |  | sdomnsym | ⊢ ( ω  ≺  𝐵  →  ¬  𝐵  ≺  ω ) | 
						
							| 20 | 18 19 | syl | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ¬  𝐵  ≺  ω ) | 
						
							| 21 |  | isfinite | ⊢ ( 𝐵  ∈  Fin  ↔  𝐵  ≺  ω ) | 
						
							| 22 | 20 21 | sylnibr | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ¬  𝐵  ∈  Fin ) | 
						
							| 23 |  | gchdjuidm | ⊢ ( ( 𝐵  ∈  GCH  ∧  ¬  𝐵  ∈  Fin )  →  ( 𝐵  ⊔  𝐵 )  ≈  𝐵 ) | 
						
							| 24 | 3 22 23 | syl2anc | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝐵  ⊔  𝐵 )  ≈  𝐵 ) | 
						
							| 25 |  | pwen | ⊢ ( ( 𝐵  ⊔  𝐵 )  ≈  𝐵  →  𝒫  ( 𝐵  ⊔  𝐵 )  ≈  𝒫  𝐵 ) | 
						
							| 26 |  | domen1 | ⊢ ( 𝒫  ( 𝐵  ⊔  𝐵 )  ≈  𝒫  𝐵  →  ( 𝒫  ( 𝐵  ⊔  𝐵 )  ≼  ( 𝐵  ⊔  𝒫  𝐴 )  ↔  𝒫  𝐵  ≼  ( 𝐵  ⊔  𝒫  𝐴 ) ) ) | 
						
							| 27 | 24 25 26 | 3syl | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝒫  ( 𝐵  ⊔  𝐵 )  ≼  ( 𝐵  ⊔  𝒫  𝐴 )  ↔  𝒫  𝐵  ≼  ( 𝐵  ⊔  𝒫  𝐴 ) ) ) | 
						
							| 28 |  | pwdjudom | ⊢ ( 𝒫  ( 𝐵  ⊔  𝐵 )  ≼  ( 𝐵  ⊔  𝒫  𝐴 )  →  𝒫  𝐵  ≼  𝒫  𝐴 ) | 
						
							| 29 |  | canth2g | ⊢ ( 𝐵  ∈  GCH  →  𝐵  ≺  𝒫  𝐵 ) | 
						
							| 30 |  | sdomdomtr | ⊢ ( ( 𝐵  ≺  𝒫  𝐵  ∧  𝒫  𝐵  ≼  𝒫  𝐴 )  →  𝐵  ≺  𝒫  𝐴 ) | 
						
							| 31 | 30 | ex | ⊢ ( 𝐵  ≺  𝒫  𝐵  →  ( 𝒫  𝐵  ≼  𝒫  𝐴  →  𝐵  ≺  𝒫  𝐴 ) ) | 
						
							| 32 | 3 29 31 | 3syl | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝒫  𝐵  ≼  𝒫  𝐴  →  𝐵  ≺  𝒫  𝐴 ) ) | 
						
							| 33 |  | gchi | ⊢ ( ( 𝐴  ∈  GCH  ∧  𝐴  ≺  𝐵  ∧  𝐵  ≺  𝒫  𝐴 )  →  𝐴  ∈  Fin ) | 
						
							| 34 | 33 | 3expia | ⊢ ( ( 𝐴  ∈  GCH  ∧  𝐴  ≺  𝐵 )  →  ( 𝐵  ≺  𝒫  𝐴  →  𝐴  ∈  Fin ) ) | 
						
							| 35 | 34 | 3ad2antl2 | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝐵  ≺  𝒫  𝐴  →  𝐴  ∈  Fin ) ) | 
						
							| 36 |  | isfinite | ⊢ ( 𝐴  ∈  Fin  ↔  𝐴  ≺  ω ) | 
						
							| 37 |  | simpl1 | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ω  ≼  𝐴 ) | 
						
							| 38 |  | domnsym | ⊢ ( ω  ≼  𝐴  →  ¬  𝐴  ≺  ω ) | 
						
							| 39 | 37 38 | syl | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ¬  𝐴  ≺  ω ) | 
						
							| 40 | 39 | pm2.21d | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝐴  ≺  ω  →  𝒫  𝐴  ≼  𝐵 ) ) | 
						
							| 41 | 36 40 | biimtrid | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝐴  ∈  Fin  →  𝒫  𝐴  ≼  𝐵 ) ) | 
						
							| 42 | 32 35 41 | 3syld | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝒫  𝐵  ≼  𝒫  𝐴  →  𝒫  𝐴  ≼  𝐵 ) ) | 
						
							| 43 | 28 42 | syl5 | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝒫  ( 𝐵  ⊔  𝐵 )  ≼  ( 𝐵  ⊔  𝒫  𝐴 )  →  𝒫  𝐴  ≼  𝐵 ) ) | 
						
							| 44 | 27 43 | sylbird | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝒫  𝐵  ≼  ( 𝐵  ⊔  𝒫  𝐴 )  →  𝒫  𝐴  ≼  𝐵 ) ) | 
						
							| 45 | 16 44 | syld | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( ( 𝒫  𝐴  ⊔  𝐵 )  ≈  𝒫  𝐵  →  𝒫  𝐴  ≼  𝐵 ) ) | 
						
							| 46 |  | djudoml | ⊢ ( ( 𝐵  ∈  GCH  ∧  𝒫  𝐴  ∈  V )  →  𝐵  ≼  ( 𝐵  ⊔  𝒫  𝐴 ) ) | 
						
							| 47 | 3 2 46 | syl2anc | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  𝐵  ≼  ( 𝐵  ⊔  𝒫  𝐴 ) ) | 
						
							| 48 |  | domentr | ⊢ ( ( 𝐵  ≼  ( 𝐵  ⊔  𝒫  𝐴 )  ∧  ( 𝐵  ⊔  𝒫  𝐴 )  ≈  ( 𝒫  𝐴  ⊔  𝐵 ) )  →  𝐵  ≼  ( 𝒫  𝐴  ⊔  𝐵 ) ) | 
						
							| 49 | 47 9 48 | syl2anc | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  𝐵  ≼  ( 𝒫  𝐴  ⊔  𝐵 ) ) | 
						
							| 50 |  | sdomdom | ⊢ ( 𝐴  ≺  𝐵  →  𝐴  ≼  𝐵 ) | 
						
							| 51 | 50 | adantl | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  𝐴  ≼  𝐵 ) | 
						
							| 52 |  | pwdom | ⊢ ( 𝐴  ≼  𝐵  →  𝒫  𝐴  ≼  𝒫  𝐵 ) | 
						
							| 53 | 51 52 | syl | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  𝒫  𝐴  ≼  𝒫  𝐵 ) | 
						
							| 54 |  | djudom1 | ⊢ ( ( 𝒫  𝐴  ≼  𝒫  𝐵  ∧  𝐵  ∈  GCH )  →  ( 𝒫  𝐴  ⊔  𝐵 )  ≼  ( 𝒫  𝐵  ⊔  𝐵 ) ) | 
						
							| 55 | 53 3 54 | syl2anc | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝒫  𝐴  ⊔  𝐵 )  ≼  ( 𝒫  𝐵  ⊔  𝐵 ) ) | 
						
							| 56 |  | sdomdom | ⊢ ( 𝐵  ≺  𝒫  𝐵  →  𝐵  ≼  𝒫  𝐵 ) | 
						
							| 57 | 3 29 56 | 3syl | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  𝐵  ≼  𝒫  𝐵 ) | 
						
							| 58 | 3 | pwexd | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  𝒫  𝐵  ∈  V ) | 
						
							| 59 |  | djudom2 | ⊢ ( ( 𝐵  ≼  𝒫  𝐵  ∧  𝒫  𝐵  ∈  V )  →  ( 𝒫  𝐵  ⊔  𝐵 )  ≼  ( 𝒫  𝐵  ⊔  𝒫  𝐵 ) ) | 
						
							| 60 | 57 58 59 | syl2anc | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝒫  𝐵  ⊔  𝐵 )  ≼  ( 𝒫  𝐵  ⊔  𝒫  𝐵 ) ) | 
						
							| 61 |  | domtr | ⊢ ( ( ( 𝒫  𝐴  ⊔  𝐵 )  ≼  ( 𝒫  𝐵  ⊔  𝐵 )  ∧  ( 𝒫  𝐵  ⊔  𝐵 )  ≼  ( 𝒫  𝐵  ⊔  𝒫  𝐵 ) )  →  ( 𝒫  𝐴  ⊔  𝐵 )  ≼  ( 𝒫  𝐵  ⊔  𝒫  𝐵 ) ) | 
						
							| 62 | 55 60 61 | syl2anc | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝒫  𝐴  ⊔  𝐵 )  ≼  ( 𝒫  𝐵  ⊔  𝒫  𝐵 ) ) | 
						
							| 63 |  | pwdju1 | ⊢ ( 𝐵  ∈  GCH  →  ( 𝒫  𝐵  ⊔  𝒫  𝐵 )  ≈  𝒫  ( 𝐵  ⊔  1o ) ) | 
						
							| 64 | 3 63 | syl | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝒫  𝐵  ⊔  𝒫  𝐵 )  ≈  𝒫  ( 𝐵  ⊔  1o ) ) | 
						
							| 65 |  | gchdju1 | ⊢ ( ( 𝐵  ∈  GCH  ∧  ¬  𝐵  ∈  Fin )  →  ( 𝐵  ⊔  1o )  ≈  𝐵 ) | 
						
							| 66 | 3 22 65 | syl2anc | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝐵  ⊔  1o )  ≈  𝐵 ) | 
						
							| 67 |  | pwen | ⊢ ( ( 𝐵  ⊔  1o )  ≈  𝐵  →  𝒫  ( 𝐵  ⊔  1o )  ≈  𝒫  𝐵 ) | 
						
							| 68 | 66 67 | syl | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  𝒫  ( 𝐵  ⊔  1o )  ≈  𝒫  𝐵 ) | 
						
							| 69 |  | entr | ⊢ ( ( ( 𝒫  𝐵  ⊔  𝒫  𝐵 )  ≈  𝒫  ( 𝐵  ⊔  1o )  ∧  𝒫  ( 𝐵  ⊔  1o )  ≈  𝒫  𝐵 )  →  ( 𝒫  𝐵  ⊔  𝒫  𝐵 )  ≈  𝒫  𝐵 ) | 
						
							| 70 | 64 68 69 | syl2anc | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝒫  𝐵  ⊔  𝒫  𝐵 )  ≈  𝒫  𝐵 ) | 
						
							| 71 |  | domentr | ⊢ ( ( ( 𝒫  𝐴  ⊔  𝐵 )  ≼  ( 𝒫  𝐵  ⊔  𝒫  𝐵 )  ∧  ( 𝒫  𝐵  ⊔  𝒫  𝐵 )  ≈  𝒫  𝐵 )  →  ( 𝒫  𝐴  ⊔  𝐵 )  ≼  𝒫  𝐵 ) | 
						
							| 72 | 62 70 71 | syl2anc | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝒫  𝐴  ⊔  𝐵 )  ≼  𝒫  𝐵 ) | 
						
							| 73 |  | gchor | ⊢ ( ( ( 𝐵  ∈  GCH  ∧  ¬  𝐵  ∈  Fin )  ∧  ( 𝐵  ≼  ( 𝒫  𝐴  ⊔  𝐵 )  ∧  ( 𝒫  𝐴  ⊔  𝐵 )  ≼  𝒫  𝐵 ) )  →  ( 𝐵  ≈  ( 𝒫  𝐴  ⊔  𝐵 )  ∨  ( 𝒫  𝐴  ⊔  𝐵 )  ≈  𝒫  𝐵 ) ) | 
						
							| 74 | 3 22 49 72 73 | syl22anc | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝐵  ≈  ( 𝒫  𝐴  ⊔  𝐵 )  ∨  ( 𝒫  𝐴  ⊔  𝐵 )  ≈  𝒫  𝐵 ) ) | 
						
							| 75 | 7 45 74 | mpjaod | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  𝒫  𝐴  ≼  𝐵 ) | 
						
							| 76 | 75 | ex | ⊢ ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  →  ( 𝐴  ≺  𝐵  →  𝒫  𝐴  ≼  𝐵 ) ) | 
						
							| 77 |  | reldom | ⊢ Rel   ≼ | 
						
							| 78 | 77 | brrelex1i | ⊢ ( 𝒫  𝐴  ≼  𝐵  →  𝒫  𝐴  ∈  V ) | 
						
							| 79 |  | pwexb | ⊢ ( 𝐴  ∈  V  ↔  𝒫  𝐴  ∈  V ) | 
						
							| 80 |  | canth2g | ⊢ ( 𝐴  ∈  V  →  𝐴  ≺  𝒫  𝐴 ) | 
						
							| 81 | 79 80 | sylbir | ⊢ ( 𝒫  𝐴  ∈  V  →  𝐴  ≺  𝒫  𝐴 ) | 
						
							| 82 | 78 81 | syl | ⊢ ( 𝒫  𝐴  ≼  𝐵  →  𝐴  ≺  𝒫  𝐴 ) | 
						
							| 83 |  | sdomdomtr | ⊢ ( ( 𝐴  ≺  𝒫  𝐴  ∧  𝒫  𝐴  ≼  𝐵 )  →  𝐴  ≺  𝐵 ) | 
						
							| 84 | 82 83 | mpancom | ⊢ ( 𝒫  𝐴  ≼  𝐵  →  𝐴  ≺  𝐵 ) | 
						
							| 85 | 76 84 | impbid1 | ⊢ ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  →  ( 𝐴  ≺  𝐵  ↔  𝒫  𝐴  ≼  𝐵 ) ) |