Metamath Proof Explorer


Theorem ge0addcl

Description: The nonnegative reals are closed under addition. (Contributed by Mario Carneiro, 19-Jun-2014)

Ref Expression
Assertion ge0addcl ( ( 𝐴 ∈ ( 0 [,) +∞ ) ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( 𝐴 + 𝐵 ) ∈ ( 0 [,) +∞ ) )

Proof

Step Hyp Ref Expression
1 elrege0 ( 𝐴 ∈ ( 0 [,) +∞ ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) )
2 elrege0 ( 𝐵 ∈ ( 0 [,) +∞ ) ↔ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) )
3 readdcl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + 𝐵 ) ∈ ℝ )
4 3 ad2ant2r ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 + 𝐵 ) ∈ ℝ )
5 addge0 ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( 𝐴 + 𝐵 ) )
6 5 an4s ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( 𝐴 + 𝐵 ) )
7 elrege0 ( ( 𝐴 + 𝐵 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐴 + 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 + 𝐵 ) ) )
8 4 6 7 sylanbrc ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 + 𝐵 ) ∈ ( 0 [,) +∞ ) )
9 1 2 8 syl2anb ( ( 𝐴 ∈ ( 0 [,) +∞ ) ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( 𝐴 + 𝐵 ) ∈ ( 0 [,) +∞ ) )