| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elrege0 |
⊢ ( 𝐴 ∈ ( 0 [,) +∞ ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
| 2 |
|
elrege0 |
⊢ ( 𝐵 ∈ ( 0 [,) +∞ ) ↔ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) |
| 3 |
|
readdcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
| 4 |
3
|
ad2ant2r |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
| 5 |
|
addge0 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( 𝐴 + 𝐵 ) ) |
| 6 |
5
|
an4s |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( 𝐴 + 𝐵 ) ) |
| 7 |
|
elrege0 |
⊢ ( ( 𝐴 + 𝐵 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐴 + 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 + 𝐵 ) ) ) |
| 8 |
4 6 7
|
sylanbrc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 + 𝐵 ) ∈ ( 0 [,) +∞ ) ) |
| 9 |
1 2 8
|
syl2anb |
⊢ ( ( 𝐴 ∈ ( 0 [,) +∞ ) ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( 𝐴 + 𝐵 ) ∈ ( 0 [,) +∞ ) ) |