Description: A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ge0gtmnf | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) → -∞ < 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnflt0 | ⊢ -∞ < 0 | |
| 2 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 3 | 0xr | ⊢ 0 ∈ ℝ* | |
| 4 | xrltletr | ⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( ( -∞ < 0 ∧ 0 ≤ 𝐴 ) → -∞ < 𝐴 ) ) | |
| 5 | 2 3 4 | mp3an12 | ⊢ ( 𝐴 ∈ ℝ* → ( ( -∞ < 0 ∧ 0 ≤ 𝐴 ) → -∞ < 𝐴 ) ) |
| 6 | 5 | imp | ⊢ ( ( 𝐴 ∈ ℝ* ∧ ( -∞ < 0 ∧ 0 ≤ 𝐴 ) ) → -∞ < 𝐴 ) |
| 7 | 1 6 | mpanr1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) → -∞ < 𝐴 ) |