Description: A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ge0gtmnf | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) → -∞ < 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnflt0 | ⊢ -∞ < 0 | |
2 | mnfxr | ⊢ -∞ ∈ ℝ* | |
3 | 0xr | ⊢ 0 ∈ ℝ* | |
4 | xrltletr | ⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( ( -∞ < 0 ∧ 0 ≤ 𝐴 ) → -∞ < 𝐴 ) ) | |
5 | 2 3 4 | mp3an12 | ⊢ ( 𝐴 ∈ ℝ* → ( ( -∞ < 0 ∧ 0 ≤ 𝐴 ) → -∞ < 𝐴 ) ) |
6 | 5 | imp | ⊢ ( ( 𝐴 ∈ ℝ* ∧ ( -∞ < 0 ∧ 0 ≤ 𝐴 ) ) → -∞ < 𝐴 ) |
7 | 1 6 | mpanr1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) → -∞ < 𝐴 ) |