Metamath Proof Explorer


Theorem ge0gtmnf

Description: A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion ge0gtmnf ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) → -∞ < 𝐴 )

Proof

Step Hyp Ref Expression
1 mnflt0 -∞ < 0
2 mnfxr -∞ ∈ ℝ*
3 0xr 0 ∈ ℝ*
4 xrltletr ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ*𝐴 ∈ ℝ* ) → ( ( -∞ < 0 ∧ 0 ≤ 𝐴 ) → -∞ < 𝐴 ) )
5 2 3 4 mp3an12 ( 𝐴 ∈ ℝ* → ( ( -∞ < 0 ∧ 0 ≤ 𝐴 ) → -∞ < 𝐴 ) )
6 5 imp ( ( 𝐴 ∈ ℝ* ∧ ( -∞ < 0 ∧ 0 ≤ 𝐴 ) ) → -∞ < 𝐴 )
7 1 6 mpanr1 ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) → -∞ < 𝐴 )