| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano2re |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 + 1 ) ∈ ℝ ) |
| 3 |
|
0red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 0 ∈ ℝ ) |
| 4 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ℝ ) |
| 5 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 0 ≤ 𝐴 ) |
| 6 |
|
ltp1 |
⊢ ( 𝐴 ∈ ℝ → 𝐴 < ( 𝐴 + 1 ) ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 < ( 𝐴 + 1 ) ) |
| 8 |
3 4 2 5 7
|
lelttrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 0 < ( 𝐴 + 1 ) ) |
| 9 |
|
elrp |
⊢ ( ( 𝐴 + 1 ) ∈ ℝ+ ↔ ( ( 𝐴 + 1 ) ∈ ℝ ∧ 0 < ( 𝐴 + 1 ) ) ) |
| 10 |
2 8 9
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 + 1 ) ∈ ℝ+ ) |