Step |
Hyp |
Ref |
Expression |
1 |
|
elxrge0 |
⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) ↔ ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ) |
2 |
|
elxrge0 |
⊢ ( 𝐵 ∈ ( 0 [,] +∞ ) ↔ ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) ) |
3 |
|
xmulcl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ·e 𝐵 ) ∈ ℝ* ) |
4 |
3
|
ad2ant2r |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 ·e 𝐵 ) ∈ ℝ* ) |
5 |
|
xmulge0 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( 𝐴 ·e 𝐵 ) ) |
6 |
|
elxrge0 |
⊢ ( ( 𝐴 ·e 𝐵 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝐴 ·e 𝐵 ) ∈ ℝ* ∧ 0 ≤ ( 𝐴 ·e 𝐵 ) ) ) |
7 |
4 5 6
|
sylanbrc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 ·e 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
8 |
1 2 7
|
syl2anb |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) → ( 𝐴 ·e 𝐵 ) ∈ ( 0 [,] +∞ ) ) |