Step |
Hyp |
Ref |
Expression |
1 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
2 |
|
0xr |
⊢ 0 ∈ ℝ* |
3 |
2
|
a1i |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐴 ≠ +∞ ) → 0 ∈ ℝ* ) |
4 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
5 |
4
|
a1i |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐴 ≠ +∞ ) → +∞ ∈ ℝ* ) |
6 |
|
eliccxr |
⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) → 𝐴 ∈ ℝ* ) |
7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐴 ≠ +∞ ) → 𝐴 ∈ ℝ* ) |
8 |
2
|
a1i |
⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) → 0 ∈ ℝ* ) |
9 |
4
|
a1i |
⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) → +∞ ∈ ℝ* ) |
10 |
|
id |
⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
11 |
|
iccgelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐴 ∈ ( 0 [,] +∞ ) ) → 0 ≤ 𝐴 ) |
12 |
8 9 10 11
|
syl3anc |
⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) → 0 ≤ 𝐴 ) |
13 |
12
|
adantr |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐴 ≠ +∞ ) → 0 ≤ 𝐴 ) |
14 |
|
pnfge |
⊢ ( 𝐴 ∈ ℝ* → 𝐴 ≤ +∞ ) |
15 |
6 14
|
syl |
⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) → 𝐴 ≤ +∞ ) |
16 |
15
|
adantr |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐴 ≠ +∞ ) → 𝐴 ≤ +∞ ) |
17 |
|
simpr |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐴 ≠ +∞ ) → 𝐴 ≠ +∞ ) |
18 |
7 5 16 17
|
xrleneltd |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐴 ≠ +∞ ) → 𝐴 < +∞ ) |
19 |
3 5 7 13 18
|
elicod |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐴 ≠ +∞ ) → 𝐴 ∈ ( 0 [,) +∞ ) ) |
20 |
1 19
|
sselid |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐴 ≠ +∞ ) → 𝐴 ∈ ℝ ) |