Step |
Hyp |
Ref |
Expression |
1 |
|
eluz2b2 |
⊢ ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑋 ∈ ℕ ∧ 1 < 𝑋 ) ) |
2 |
|
4z |
⊢ 4 ∈ ℤ |
3 |
2
|
a1i |
⊢ ( ( ( 𝑋 ∈ ℕ ∧ 1 < 𝑋 ) ∧ 𝑋 ∉ ℙ ) → 4 ∈ ℤ ) |
4 |
|
nnz |
⊢ ( 𝑋 ∈ ℕ → 𝑋 ∈ ℤ ) |
5 |
4
|
ad2antrr |
⊢ ( ( ( 𝑋 ∈ ℕ ∧ 1 < 𝑋 ) ∧ 𝑋 ∉ ℙ ) → 𝑋 ∈ ℤ ) |
6 |
|
1z |
⊢ 1 ∈ ℤ |
7 |
|
zltp1le |
⊢ ( ( 1 ∈ ℤ ∧ 𝑋 ∈ ℤ ) → ( 1 < 𝑋 ↔ ( 1 + 1 ) ≤ 𝑋 ) ) |
8 |
6 4 7
|
sylancr |
⊢ ( 𝑋 ∈ ℕ → ( 1 < 𝑋 ↔ ( 1 + 1 ) ≤ 𝑋 ) ) |
9 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
10 |
9
|
breq1i |
⊢ ( ( 1 + 1 ) ≤ 𝑋 ↔ 2 ≤ 𝑋 ) |
11 |
8 10
|
bitrdi |
⊢ ( 𝑋 ∈ ℕ → ( 1 < 𝑋 ↔ 2 ≤ 𝑋 ) ) |
12 |
|
2re |
⊢ 2 ∈ ℝ |
13 |
|
nnre |
⊢ ( 𝑋 ∈ ℕ → 𝑋 ∈ ℝ ) |
14 |
|
leloe |
⊢ ( ( 2 ∈ ℝ ∧ 𝑋 ∈ ℝ ) → ( 2 ≤ 𝑋 ↔ ( 2 < 𝑋 ∨ 2 = 𝑋 ) ) ) |
15 |
12 13 14
|
sylancr |
⊢ ( 𝑋 ∈ ℕ → ( 2 ≤ 𝑋 ↔ ( 2 < 𝑋 ∨ 2 = 𝑋 ) ) ) |
16 |
|
2z |
⊢ 2 ∈ ℤ |
17 |
|
zltp1le |
⊢ ( ( 2 ∈ ℤ ∧ 𝑋 ∈ ℤ ) → ( 2 < 𝑋 ↔ ( 2 + 1 ) ≤ 𝑋 ) ) |
18 |
16 4 17
|
sylancr |
⊢ ( 𝑋 ∈ ℕ → ( 2 < 𝑋 ↔ ( 2 + 1 ) ≤ 𝑋 ) ) |
19 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
20 |
19
|
breq1i |
⊢ ( ( 2 + 1 ) ≤ 𝑋 ↔ 3 ≤ 𝑋 ) |
21 |
18 20
|
bitrdi |
⊢ ( 𝑋 ∈ ℕ → ( 2 < 𝑋 ↔ 3 ≤ 𝑋 ) ) |
22 |
|
3re |
⊢ 3 ∈ ℝ |
23 |
|
leloe |
⊢ ( ( 3 ∈ ℝ ∧ 𝑋 ∈ ℝ ) → ( 3 ≤ 𝑋 ↔ ( 3 < 𝑋 ∨ 3 = 𝑋 ) ) ) |
24 |
22 13 23
|
sylancr |
⊢ ( 𝑋 ∈ ℕ → ( 3 ≤ 𝑋 ↔ ( 3 < 𝑋 ∨ 3 = 𝑋 ) ) ) |
25 |
|
df-4 |
⊢ 4 = ( 3 + 1 ) |
26 |
|
3z |
⊢ 3 ∈ ℤ |
27 |
|
zltp1le |
⊢ ( ( 3 ∈ ℤ ∧ 𝑋 ∈ ℤ ) → ( 3 < 𝑋 ↔ ( 3 + 1 ) ≤ 𝑋 ) ) |
28 |
26 4 27
|
sylancr |
⊢ ( 𝑋 ∈ ℕ → ( 3 < 𝑋 ↔ ( 3 + 1 ) ≤ 𝑋 ) ) |
29 |
28
|
biimpa |
⊢ ( ( 𝑋 ∈ ℕ ∧ 3 < 𝑋 ) → ( 3 + 1 ) ≤ 𝑋 ) |
30 |
25 29
|
eqbrtrid |
⊢ ( ( 𝑋 ∈ ℕ ∧ 3 < 𝑋 ) → 4 ≤ 𝑋 ) |
31 |
30
|
a1d |
⊢ ( ( 𝑋 ∈ ℕ ∧ 3 < 𝑋 ) → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) |
32 |
31
|
ex |
⊢ ( 𝑋 ∈ ℕ → ( 3 < 𝑋 → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) ) |
33 |
|
neleq1 |
⊢ ( 𝑋 = 3 → ( 𝑋 ∉ ℙ ↔ 3 ∉ ℙ ) ) |
34 |
33
|
eqcoms |
⊢ ( 3 = 𝑋 → ( 𝑋 ∉ ℙ ↔ 3 ∉ ℙ ) ) |
35 |
|
3prm |
⊢ 3 ∈ ℙ |
36 |
|
elnelall |
⊢ ( 3 ∈ ℙ → ( 3 ∉ ℙ → 4 ≤ 𝑋 ) ) |
37 |
35 36
|
mp1i |
⊢ ( 3 = 𝑋 → ( 3 ∉ ℙ → 4 ≤ 𝑋 ) ) |
38 |
34 37
|
sylbid |
⊢ ( 3 = 𝑋 → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) |
39 |
38
|
a1i |
⊢ ( 𝑋 ∈ ℕ → ( 3 = 𝑋 → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) ) |
40 |
32 39
|
jaod |
⊢ ( 𝑋 ∈ ℕ → ( ( 3 < 𝑋 ∨ 3 = 𝑋 ) → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) ) |
41 |
24 40
|
sylbid |
⊢ ( 𝑋 ∈ ℕ → ( 3 ≤ 𝑋 → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) ) |
42 |
21 41
|
sylbid |
⊢ ( 𝑋 ∈ ℕ → ( 2 < 𝑋 → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) ) |
43 |
|
neleq1 |
⊢ ( 𝑋 = 2 → ( 𝑋 ∉ ℙ ↔ 2 ∉ ℙ ) ) |
44 |
43
|
eqcoms |
⊢ ( 2 = 𝑋 → ( 𝑋 ∉ ℙ ↔ 2 ∉ ℙ ) ) |
45 |
|
2prm |
⊢ 2 ∈ ℙ |
46 |
|
elnelall |
⊢ ( 2 ∈ ℙ → ( 2 ∉ ℙ → 4 ≤ 𝑋 ) ) |
47 |
45 46
|
mp1i |
⊢ ( 2 = 𝑋 → ( 2 ∉ ℙ → 4 ≤ 𝑋 ) ) |
48 |
44 47
|
sylbid |
⊢ ( 2 = 𝑋 → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) |
49 |
48
|
a1i |
⊢ ( 𝑋 ∈ ℕ → ( 2 = 𝑋 → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) ) |
50 |
42 49
|
jaod |
⊢ ( 𝑋 ∈ ℕ → ( ( 2 < 𝑋 ∨ 2 = 𝑋 ) → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) ) |
51 |
15 50
|
sylbid |
⊢ ( 𝑋 ∈ ℕ → ( 2 ≤ 𝑋 → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) ) |
52 |
11 51
|
sylbid |
⊢ ( 𝑋 ∈ ℕ → ( 1 < 𝑋 → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) ) |
53 |
52
|
imp |
⊢ ( ( 𝑋 ∈ ℕ ∧ 1 < 𝑋 ) → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) |
54 |
53
|
imp |
⊢ ( ( ( 𝑋 ∈ ℕ ∧ 1 < 𝑋 ) ∧ 𝑋 ∉ ℙ ) → 4 ≤ 𝑋 ) |
55 |
3 5 54
|
3jca |
⊢ ( ( ( 𝑋 ∈ ℕ ∧ 1 < 𝑋 ) ∧ 𝑋 ∉ ℙ ) → ( 4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤ 𝑋 ) ) |
56 |
55
|
ex |
⊢ ( ( 𝑋 ∈ ℕ ∧ 1 < 𝑋 ) → ( 𝑋 ∉ ℙ → ( 4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤ 𝑋 ) ) ) |
57 |
|
eluz2 |
⊢ ( 𝑋 ∈ ( ℤ≥ ‘ 4 ) ↔ ( 4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤ 𝑋 ) ) |
58 |
56 57
|
syl6ibr |
⊢ ( ( 𝑋 ∈ ℕ ∧ 1 < 𝑋 ) → ( 𝑋 ∉ ℙ → 𝑋 ∈ ( ℤ≥ ‘ 4 ) ) ) |
59 |
1 58
|
sylbi |
⊢ ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑋 ∉ ℙ → 𝑋 ∈ ( ℤ≥ ‘ 4 ) ) ) |
60 |
59
|
imp |
⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑋 ∉ ℙ ) → 𝑋 ∈ ( ℤ≥ ‘ 4 ) ) |