Metamath Proof Explorer


Theorem gen22

Description: Virtual deduction generalizing rule for two quantifying variables and two virtual hypothesis. (Contributed by Alan Sare, 25-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis gen22.1 (    𝜑    ,    𝜓    ▶    𝜒    )
Assertion gen22 (    𝜑    ,    𝜓    ▶   𝑥𝑦 𝜒    )

Proof

Step Hyp Ref Expression
1 gen22.1 (    𝜑    ,    𝜓    ▶    𝜒    )
2 1 dfvd2i ( 𝜑 → ( 𝜓𝜒 ) )
3 2 alrimdv ( 𝜑 → ( 𝜓 → ∀ 𝑦 𝜒 ) )
4 3 alrimdv ( 𝜑 → ( 𝜓 → ∀ 𝑥𝑦 𝜒 ) )
5 4 dfvd2ir (    𝜑    ,    𝜓    ▶   𝑥𝑦 𝜒    )