Metamath Proof Explorer


Theorem gencbval

Description: Change of bound variable using implicit substitution. (Contributed by NM, 17-May-1996)

Ref Expression
Hypotheses gencbval.1 𝐴 ∈ V
gencbval.2 ( 𝐴 = 𝑦 → ( 𝜑𝜓 ) )
gencbval.3 ( 𝐴 = 𝑦 → ( 𝜒𝜃 ) )
gencbval.4 ( 𝜃 ↔ ∃ 𝑥 ( 𝜒𝐴 = 𝑦 ) )
Assertion gencbval ( ∀ 𝑥 ( 𝜒𝜑 ) ↔ ∀ 𝑦 ( 𝜃𝜓 ) )

Proof

Step Hyp Ref Expression
1 gencbval.1 𝐴 ∈ V
2 gencbval.2 ( 𝐴 = 𝑦 → ( 𝜑𝜓 ) )
3 gencbval.3 ( 𝐴 = 𝑦 → ( 𝜒𝜃 ) )
4 gencbval.4 ( 𝜃 ↔ ∃ 𝑥 ( 𝜒𝐴 = 𝑦 ) )
5 2 notbid ( 𝐴 = 𝑦 → ( ¬ 𝜑 ↔ ¬ 𝜓 ) )
6 1 5 3 4 gencbvex ( ∃ 𝑥 ( 𝜒 ∧ ¬ 𝜑 ) ↔ ∃ 𝑦 ( 𝜃 ∧ ¬ 𝜓 ) )
7 exanali ( ∃ 𝑥 ( 𝜒 ∧ ¬ 𝜑 ) ↔ ¬ ∀ 𝑥 ( 𝜒𝜑 ) )
8 exanali ( ∃ 𝑦 ( 𝜃 ∧ ¬ 𝜓 ) ↔ ¬ ∀ 𝑦 ( 𝜃𝜓 ) )
9 6 7 8 3bitr3i ( ¬ ∀ 𝑥 ( 𝜒𝜑 ) ↔ ¬ ∀ 𝑦 ( 𝜃𝜓 ) )
10 9 con4bii ( ∀ 𝑥 ( 𝜒𝜑 ) ↔ ∀ 𝑦 ( 𝜃𝜓 ) )