Description: Change of bound variable using implicit substitution. (Contributed by NM, 17-May-1996)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gencbval.1 | ⊢ 𝐴 ∈ V | |
gencbval.2 | ⊢ ( 𝐴 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | ||
gencbval.3 | ⊢ ( 𝐴 = 𝑦 → ( 𝜒 ↔ 𝜃 ) ) | ||
gencbval.4 | ⊢ ( 𝜃 ↔ ∃ 𝑥 ( 𝜒 ∧ 𝐴 = 𝑦 ) ) | ||
Assertion | gencbval | ⊢ ( ∀ 𝑥 ( 𝜒 → 𝜑 ) ↔ ∀ 𝑦 ( 𝜃 → 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gencbval.1 | ⊢ 𝐴 ∈ V | |
2 | gencbval.2 | ⊢ ( 𝐴 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
3 | gencbval.3 | ⊢ ( 𝐴 = 𝑦 → ( 𝜒 ↔ 𝜃 ) ) | |
4 | gencbval.4 | ⊢ ( 𝜃 ↔ ∃ 𝑥 ( 𝜒 ∧ 𝐴 = 𝑦 ) ) | |
5 | 2 | notbid | ⊢ ( 𝐴 = 𝑦 → ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) |
6 | 1 5 3 4 | gencbvex | ⊢ ( ∃ 𝑥 ( 𝜒 ∧ ¬ 𝜑 ) ↔ ∃ 𝑦 ( 𝜃 ∧ ¬ 𝜓 ) ) |
7 | exanali | ⊢ ( ∃ 𝑥 ( 𝜒 ∧ ¬ 𝜑 ) ↔ ¬ ∀ 𝑥 ( 𝜒 → 𝜑 ) ) | |
8 | exanali | ⊢ ( ∃ 𝑦 ( 𝜃 ∧ ¬ 𝜓 ) ↔ ¬ ∀ 𝑦 ( 𝜃 → 𝜓 ) ) | |
9 | 6 7 8 | 3bitr3i | ⊢ ( ¬ ∀ 𝑥 ( 𝜒 → 𝜑 ) ↔ ¬ ∀ 𝑦 ( 𝜃 → 𝜓 ) ) |
10 | 9 | con4bii | ⊢ ( ∀ 𝑥 ( 𝜒 → 𝜑 ) ↔ ∀ 𝑦 ( 𝜃 → 𝜓 ) ) |