Step |
Hyp |
Ref |
Expression |
1 |
|
gencbvex.1 |
⊢ 𝐴 ∈ V |
2 |
|
gencbvex.2 |
⊢ ( 𝐴 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
3 |
|
gencbvex.3 |
⊢ ( 𝐴 = 𝑦 → ( 𝜒 ↔ 𝜃 ) ) |
4 |
|
gencbvex.4 |
⊢ ( 𝜃 ↔ ∃ 𝑥 ( 𝜒 ∧ 𝐴 = 𝑦 ) ) |
5 |
|
excom |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑦 = 𝐴 ∧ ( 𝜃 ∧ 𝜓 ) ) ↔ ∃ 𝑦 ∃ 𝑥 ( 𝑦 = 𝐴 ∧ ( 𝜃 ∧ 𝜓 ) ) ) |
6 |
3 2
|
anbi12d |
⊢ ( 𝐴 = 𝑦 → ( ( 𝜒 ∧ 𝜑 ) ↔ ( 𝜃 ∧ 𝜓 ) ) ) |
7 |
6
|
bicomd |
⊢ ( 𝐴 = 𝑦 → ( ( 𝜃 ∧ 𝜓 ) ↔ ( 𝜒 ∧ 𝜑 ) ) ) |
8 |
7
|
eqcoms |
⊢ ( 𝑦 = 𝐴 → ( ( 𝜃 ∧ 𝜓 ) ↔ ( 𝜒 ∧ 𝜑 ) ) ) |
9 |
1 8
|
ceqsexv |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ ( 𝜃 ∧ 𝜓 ) ) ↔ ( 𝜒 ∧ 𝜑 ) ) |
10 |
9
|
exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑦 = 𝐴 ∧ ( 𝜃 ∧ 𝜓 ) ) ↔ ∃ 𝑥 ( 𝜒 ∧ 𝜑 ) ) |
11 |
|
19.41v |
⊢ ( ∃ 𝑥 ( 𝑦 = 𝐴 ∧ ( 𝜃 ∧ 𝜓 ) ) ↔ ( ∃ 𝑥 𝑦 = 𝐴 ∧ ( 𝜃 ∧ 𝜓 ) ) ) |
12 |
|
simpr |
⊢ ( ( ∃ 𝑥 𝑦 = 𝐴 ∧ ( 𝜃 ∧ 𝜓 ) ) → ( 𝜃 ∧ 𝜓 ) ) |
13 |
|
eqcom |
⊢ ( 𝐴 = 𝑦 ↔ 𝑦 = 𝐴 ) |
14 |
13
|
biimpi |
⊢ ( 𝐴 = 𝑦 → 𝑦 = 𝐴 ) |
15 |
14
|
adantl |
⊢ ( ( 𝜒 ∧ 𝐴 = 𝑦 ) → 𝑦 = 𝐴 ) |
16 |
15
|
eximi |
⊢ ( ∃ 𝑥 ( 𝜒 ∧ 𝐴 = 𝑦 ) → ∃ 𝑥 𝑦 = 𝐴 ) |
17 |
4 16
|
sylbi |
⊢ ( 𝜃 → ∃ 𝑥 𝑦 = 𝐴 ) |
18 |
17
|
adantr |
⊢ ( ( 𝜃 ∧ 𝜓 ) → ∃ 𝑥 𝑦 = 𝐴 ) |
19 |
18
|
ancri |
⊢ ( ( 𝜃 ∧ 𝜓 ) → ( ∃ 𝑥 𝑦 = 𝐴 ∧ ( 𝜃 ∧ 𝜓 ) ) ) |
20 |
12 19
|
impbii |
⊢ ( ( ∃ 𝑥 𝑦 = 𝐴 ∧ ( 𝜃 ∧ 𝜓 ) ) ↔ ( 𝜃 ∧ 𝜓 ) ) |
21 |
11 20
|
bitri |
⊢ ( ∃ 𝑥 ( 𝑦 = 𝐴 ∧ ( 𝜃 ∧ 𝜓 ) ) ↔ ( 𝜃 ∧ 𝜓 ) ) |
22 |
21
|
exbii |
⊢ ( ∃ 𝑦 ∃ 𝑥 ( 𝑦 = 𝐴 ∧ ( 𝜃 ∧ 𝜓 ) ) ↔ ∃ 𝑦 ( 𝜃 ∧ 𝜓 ) ) |
23 |
5 10 22
|
3bitr3i |
⊢ ( ∃ 𝑥 ( 𝜒 ∧ 𝜑 ) ↔ ∃ 𝑦 ( 𝜃 ∧ 𝜓 ) ) |