Metamath Proof Explorer


Theorem gencbvex2

Description: Restatement of gencbvex with weaker hypotheses. (Contributed by Jeff Hankins, 6-Dec-2006)

Ref Expression
Hypotheses gencbvex2.1 𝐴 ∈ V
gencbvex2.2 ( 𝐴 = 𝑦 → ( 𝜑𝜓 ) )
gencbvex2.3 ( 𝐴 = 𝑦 → ( 𝜒𝜃 ) )
gencbvex2.4 ( 𝜃 → ∃ 𝑥 ( 𝜒𝐴 = 𝑦 ) )
Assertion gencbvex2 ( ∃ 𝑥 ( 𝜒𝜑 ) ↔ ∃ 𝑦 ( 𝜃𝜓 ) )

Proof

Step Hyp Ref Expression
1 gencbvex2.1 𝐴 ∈ V
2 gencbvex2.2 ( 𝐴 = 𝑦 → ( 𝜑𝜓 ) )
3 gencbvex2.3 ( 𝐴 = 𝑦 → ( 𝜒𝜃 ) )
4 gencbvex2.4 ( 𝜃 → ∃ 𝑥 ( 𝜒𝐴 = 𝑦 ) )
5 3 biimpac ( ( 𝜒𝐴 = 𝑦 ) → 𝜃 )
6 5 exlimiv ( ∃ 𝑥 ( 𝜒𝐴 = 𝑦 ) → 𝜃 )
7 4 6 impbii ( 𝜃 ↔ ∃ 𝑥 ( 𝜒𝐴 = 𝑦 ) )
8 1 2 3 7 gencbvex ( ∃ 𝑥 ( 𝜒𝜑 ) ↔ ∃ 𝑦 ( 𝜃𝜓 ) )