Metamath Proof Explorer


Theorem gencl

Description: Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996)

Ref Expression
Hypotheses gencl.1 ( 𝜃 ↔ ∃ 𝑥 ( 𝜒𝐴 = 𝐵 ) )
gencl.2 ( 𝐴 = 𝐵 → ( 𝜑𝜓 ) )
gencl.3 ( 𝜒𝜑 )
Assertion gencl ( 𝜃𝜓 )

Proof

Step Hyp Ref Expression
1 gencl.1 ( 𝜃 ↔ ∃ 𝑥 ( 𝜒𝐴 = 𝐵 ) )
2 gencl.2 ( 𝐴 = 𝐵 → ( 𝜑𝜓 ) )
3 gencl.3 ( 𝜒𝜑 )
4 3 2 syl5ib ( 𝐴 = 𝐵 → ( 𝜒𝜓 ) )
5 4 impcom ( ( 𝜒𝐴 = 𝐵 ) → 𝜓 )
6 5 exlimiv ( ∃ 𝑥 ( 𝜒𝐴 = 𝐵 ) → 𝜓 )
7 1 6 sylbi ( 𝜃𝜓 )