| Step |
Hyp |
Ref |
Expression |
| 1 |
|
genp.1 |
⊢ 𝐹 = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) |
| 2 |
|
genp.2 |
⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q ) |
| 3 |
|
genpass.4 |
⊢ dom 𝐹 = ( P × P ) |
| 4 |
|
genpass.5 |
⊢ ( ( 𝑓 ∈ P ∧ 𝑔 ∈ P ) → ( 𝑓 𝐹 𝑔 ) ∈ P ) |
| 5 |
|
genpass.6 |
⊢ ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) = ( 𝑓 𝐺 ( 𝑔 𝐺 ℎ ) ) |
| 6 |
1 2
|
genpelv |
⊢ ( ( 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑡 ∈ ( 𝐵 𝐹 𝐶 ) ↔ ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ) ) |
| 7 |
6
|
3adant1 |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑡 ∈ ( 𝐵 𝐹 𝐶 ) ↔ ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ) ) |
| 8 |
7
|
anbi1d |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ( 𝑡 ∈ ( 𝐵 𝐹 𝐶 ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ↔ ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) ) |
| 9 |
8
|
exbidv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ∃ 𝑡 ( 𝑡 ∈ ( 𝐵 𝐹 𝐶 ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ↔ ∃ 𝑡 ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) ) |
| 10 |
|
df-rex |
⊢ ( ∃ 𝑡 ∈ ( 𝐵 𝐹 𝐶 ) 𝑥 = ( 𝑓 𝐺 𝑡 ) ↔ ∃ 𝑡 ( 𝑡 ∈ ( 𝐵 𝐹 𝐶 ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) |
| 11 |
|
ovex |
⊢ ( 𝑔 𝐺 ℎ ) ∈ V |
| 12 |
11
|
isseti |
⊢ ∃ 𝑡 𝑡 = ( 𝑔 𝐺 ℎ ) |
| 13 |
12
|
biantrur |
⊢ ( 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ( ∃ 𝑡 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 14 |
|
19.41v |
⊢ ( ∃ 𝑡 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ↔ ( ∃ 𝑡 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 15 |
13 14
|
bitr4i |
⊢ ( 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ∃ 𝑡 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 16 |
15
|
rexbii |
⊢ ( ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ∃ ℎ ∈ 𝐶 ∃ 𝑡 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 17 |
|
rexcom4 |
⊢ ( ∃ ℎ ∈ 𝐶 ∃ 𝑡 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ↔ ∃ 𝑡 ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 18 |
16 17
|
bitri |
⊢ ( ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ∃ 𝑡 ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 19 |
18
|
rexbii |
⊢ ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ∃ 𝑔 ∈ 𝐵 ∃ 𝑡 ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 20 |
|
rexcom4 |
⊢ ( ∃ 𝑔 ∈ 𝐵 ∃ 𝑡 ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ↔ ∃ 𝑡 ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 21 |
|
oveq2 |
⊢ ( 𝑡 = ( 𝑔 𝐺 ℎ ) → ( 𝑓 𝐺 𝑡 ) = ( 𝑓 𝐺 ( 𝑔 𝐺 ℎ ) ) ) |
| 22 |
21 5
|
eqtr4di |
⊢ ( 𝑡 = ( 𝑔 𝐺 ℎ ) → ( 𝑓 𝐺 𝑡 ) = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) |
| 23 |
22
|
eqeq2d |
⊢ ( 𝑡 = ( 𝑔 𝐺 ℎ ) → ( 𝑥 = ( 𝑓 𝐺 𝑡 ) ↔ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 24 |
23
|
pm5.32i |
⊢ ( ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ↔ ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 25 |
24
|
rexbii |
⊢ ( ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ↔ ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 26 |
|
r19.41v |
⊢ ( ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ↔ ( ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) |
| 27 |
25 26
|
bitr3i |
⊢ ( ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ↔ ( ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) |
| 28 |
27
|
rexbii |
⊢ ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ↔ ∃ 𝑔 ∈ 𝐵 ( ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) |
| 29 |
|
r19.41v |
⊢ ( ∃ 𝑔 ∈ 𝐵 ( ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ↔ ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) |
| 30 |
28 29
|
bitri |
⊢ ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ↔ ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) |
| 31 |
30
|
exbii |
⊢ ( ∃ 𝑡 ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ↔ ∃ 𝑡 ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) |
| 32 |
19 20 31
|
3bitri |
⊢ ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ∃ 𝑡 ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) |
| 33 |
9 10 32
|
3bitr4g |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ∃ 𝑡 ∈ ( 𝐵 𝐹 𝐶 ) 𝑥 = ( 𝑓 𝐺 𝑡 ) ↔ ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 34 |
33
|
rexbidv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑡 ∈ ( 𝐵 𝐹 𝐶 ) 𝑥 = ( 𝑓 𝐺 𝑡 ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 35 |
4
|
caovcl |
⊢ ( ( 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝐵 𝐹 𝐶 ) ∈ P ) |
| 36 |
1 2
|
genpelv |
⊢ ( ( 𝐴 ∈ P ∧ ( 𝐵 𝐹 𝐶 ) ∈ P ) → ( 𝑥 ∈ ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑡 ∈ ( 𝐵 𝐹 𝐶 ) 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) |
| 37 |
35 36
|
sylan2 |
⊢ ( ( 𝐴 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐶 ∈ P ) ) → ( 𝑥 ∈ ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑡 ∈ ( 𝐵 𝐹 𝐶 ) 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) |
| 38 |
37
|
3impb |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑥 ∈ ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑡 ∈ ( 𝐵 𝐹 𝐶 ) 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) |
| 39 |
4
|
caovcl |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 𝐹 𝐵 ) ∈ P ) |
| 40 |
1 2
|
genpelv |
⊢ ( ( ( 𝐴 𝐹 𝐵 ) ∈ P ∧ 𝐶 ∈ P ) → ( 𝑥 ∈ ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) ↔ ∃ 𝑡 ∈ ( 𝐴 𝐹 𝐵 ) ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) |
| 41 |
39 40
|
stoic3 |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑥 ∈ ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) ↔ ∃ 𝑡 ∈ ( 𝐴 𝐹 𝐵 ) ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) |
| 42 |
1 2
|
genpelv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑡 ∈ ( 𝐴 𝐹 𝐵 ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 𝑡 = ( 𝑓 𝐺 𝑔 ) ) ) |
| 43 |
42
|
3adant3 |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑡 ∈ ( 𝐴 𝐹 𝐵 ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 𝑡 = ( 𝑓 𝐺 𝑔 ) ) ) |
| 44 |
43
|
anbi1d |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ( 𝑡 ∈ ( 𝐴 𝐹 𝐵 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ↔ ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) ) |
| 45 |
44
|
exbidv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ∃ 𝑡 ( 𝑡 ∈ ( 𝐴 𝐹 𝐵 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ↔ ∃ 𝑡 ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) ) |
| 46 |
|
df-rex |
⊢ ( ∃ 𝑡 ∈ ( 𝐴 𝐹 𝐵 ) ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ↔ ∃ 𝑡 ( 𝑡 ∈ ( 𝐴 𝐹 𝐵 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) |
| 47 |
|
19.41v |
⊢ ( ∃ 𝑡 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ↔ ( ∃ 𝑡 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 48 |
|
oveq1 |
⊢ ( 𝑡 = ( 𝑓 𝐺 𝑔 ) → ( 𝑡 𝐺 ℎ ) = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) |
| 49 |
48
|
eqeq2d |
⊢ ( 𝑡 = ( 𝑓 𝐺 𝑔 ) → ( 𝑥 = ( 𝑡 𝐺 ℎ ) ↔ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 50 |
49
|
rexbidv |
⊢ ( 𝑡 = ( 𝑓 𝐺 𝑔 ) → ( ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ↔ ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 51 |
50
|
pm5.32i |
⊢ ( ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ↔ ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 52 |
51
|
exbii |
⊢ ( ∃ 𝑡 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ↔ ∃ 𝑡 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 53 |
|
ovex |
⊢ ( 𝑓 𝐺 𝑔 ) ∈ V |
| 54 |
53
|
isseti |
⊢ ∃ 𝑡 𝑡 = ( 𝑓 𝐺 𝑔 ) |
| 55 |
54
|
biantrur |
⊢ ( ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ( ∃ 𝑡 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 56 |
47 52 55
|
3bitr4ri |
⊢ ( ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ∃ 𝑡 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) |
| 57 |
56
|
rexbii |
⊢ ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ∃ 𝑔 ∈ 𝐵 ∃ 𝑡 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) |
| 58 |
|
rexcom4 |
⊢ ( ∃ 𝑔 ∈ 𝐵 ∃ 𝑡 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ↔ ∃ 𝑡 ∃ 𝑔 ∈ 𝐵 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) |
| 59 |
57 58
|
bitri |
⊢ ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ∃ 𝑡 ∃ 𝑔 ∈ 𝐵 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) |
| 60 |
59
|
rexbii |
⊢ ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑡 ∃ 𝑔 ∈ 𝐵 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) |
| 61 |
|
rexcom4 |
⊢ ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑡 ∃ 𝑔 ∈ 𝐵 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ↔ ∃ 𝑡 ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) |
| 62 |
|
r19.41vv |
⊢ ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ↔ ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) |
| 63 |
62
|
exbii |
⊢ ( ∃ 𝑡 ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ↔ ∃ 𝑡 ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) |
| 64 |
60 61 63
|
3bitri |
⊢ ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ∃ 𝑡 ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) |
| 65 |
45 46 64
|
3bitr4g |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ∃ 𝑡 ∈ ( 𝐴 𝐹 𝐵 ) ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 66 |
41 65
|
bitrd |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑥 ∈ ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 67 |
34 38 66
|
3bitr4rd |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑥 ∈ ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) ↔ 𝑥 ∈ ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) ) ) |
| 68 |
67
|
eqrdv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) = ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) ) |
| 69 |
|
0npr |
⊢ ¬ ∅ ∈ P |
| 70 |
3 69
|
ndmovass |
⊢ ( ¬ ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) = ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) ) |
| 71 |
68 70
|
pm2.61i |
⊢ ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) = ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) |