Step |
Hyp |
Ref |
Expression |
1 |
|
genp.1 |
⊢ 𝐹 = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) |
2 |
|
genp.2 |
⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q ) |
3 |
|
genpass.4 |
⊢ dom 𝐹 = ( P × P ) |
4 |
|
genpass.5 |
⊢ ( ( 𝑓 ∈ P ∧ 𝑔 ∈ P ) → ( 𝑓 𝐹 𝑔 ) ∈ P ) |
5 |
|
genpass.6 |
⊢ ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) = ( 𝑓 𝐺 ( 𝑔 𝐺 ℎ ) ) |
6 |
1 2
|
genpelv |
⊢ ( ( 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑡 ∈ ( 𝐵 𝐹 𝐶 ) ↔ ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ) ) |
7 |
6
|
3adant1 |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑡 ∈ ( 𝐵 𝐹 𝐶 ) ↔ ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ) ) |
8 |
7
|
anbi1d |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ( 𝑡 ∈ ( 𝐵 𝐹 𝐶 ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ↔ ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) ) |
9 |
8
|
exbidv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ∃ 𝑡 ( 𝑡 ∈ ( 𝐵 𝐹 𝐶 ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ↔ ∃ 𝑡 ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) ) |
10 |
|
df-rex |
⊢ ( ∃ 𝑡 ∈ ( 𝐵 𝐹 𝐶 ) 𝑥 = ( 𝑓 𝐺 𝑡 ) ↔ ∃ 𝑡 ( 𝑡 ∈ ( 𝐵 𝐹 𝐶 ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) |
11 |
|
ovex |
⊢ ( 𝑔 𝐺 ℎ ) ∈ V |
12 |
11
|
isseti |
⊢ ∃ 𝑡 𝑡 = ( 𝑔 𝐺 ℎ ) |
13 |
12
|
biantrur |
⊢ ( 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ( ∃ 𝑡 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
14 |
|
19.41v |
⊢ ( ∃ 𝑡 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ↔ ( ∃ 𝑡 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
15 |
13 14
|
bitr4i |
⊢ ( 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ∃ 𝑡 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
16 |
15
|
rexbii |
⊢ ( ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ∃ ℎ ∈ 𝐶 ∃ 𝑡 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
17 |
|
rexcom4 |
⊢ ( ∃ ℎ ∈ 𝐶 ∃ 𝑡 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ↔ ∃ 𝑡 ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
18 |
16 17
|
bitri |
⊢ ( ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ∃ 𝑡 ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
19 |
18
|
rexbii |
⊢ ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ∃ 𝑔 ∈ 𝐵 ∃ 𝑡 ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
20 |
|
rexcom4 |
⊢ ( ∃ 𝑔 ∈ 𝐵 ∃ 𝑡 ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ↔ ∃ 𝑡 ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
21 |
|
oveq2 |
⊢ ( 𝑡 = ( 𝑔 𝐺 ℎ ) → ( 𝑓 𝐺 𝑡 ) = ( 𝑓 𝐺 ( 𝑔 𝐺 ℎ ) ) ) |
22 |
21 5
|
eqtr4di |
⊢ ( 𝑡 = ( 𝑔 𝐺 ℎ ) → ( 𝑓 𝐺 𝑡 ) = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) |
23 |
22
|
eqeq2d |
⊢ ( 𝑡 = ( 𝑔 𝐺 ℎ ) → ( 𝑥 = ( 𝑓 𝐺 𝑡 ) ↔ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
24 |
23
|
pm5.32i |
⊢ ( ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ↔ ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
25 |
24
|
rexbii |
⊢ ( ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ↔ ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
26 |
|
r19.41v |
⊢ ( ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ↔ ( ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) |
27 |
25 26
|
bitr3i |
⊢ ( ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ↔ ( ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) |
28 |
27
|
rexbii |
⊢ ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ↔ ∃ 𝑔 ∈ 𝐵 ( ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) |
29 |
|
r19.41v |
⊢ ( ∃ 𝑔 ∈ 𝐵 ( ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ↔ ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) |
30 |
28 29
|
bitri |
⊢ ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ↔ ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) |
31 |
30
|
exbii |
⊢ ( ∃ 𝑡 ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ↔ ∃ 𝑡 ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) |
32 |
19 20 31
|
3bitri |
⊢ ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ∃ 𝑡 ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) |
33 |
9 10 32
|
3bitr4g |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ∃ 𝑡 ∈ ( 𝐵 𝐹 𝐶 ) 𝑥 = ( 𝑓 𝐺 𝑡 ) ↔ ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
34 |
33
|
rexbidv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑡 ∈ ( 𝐵 𝐹 𝐶 ) 𝑥 = ( 𝑓 𝐺 𝑡 ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
35 |
4
|
caovcl |
⊢ ( ( 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝐵 𝐹 𝐶 ) ∈ P ) |
36 |
1 2
|
genpelv |
⊢ ( ( 𝐴 ∈ P ∧ ( 𝐵 𝐹 𝐶 ) ∈ P ) → ( 𝑥 ∈ ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑡 ∈ ( 𝐵 𝐹 𝐶 ) 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) |
37 |
35 36
|
sylan2 |
⊢ ( ( 𝐴 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐶 ∈ P ) ) → ( 𝑥 ∈ ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑡 ∈ ( 𝐵 𝐹 𝐶 ) 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) |
38 |
37
|
3impb |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑥 ∈ ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑡 ∈ ( 𝐵 𝐹 𝐶 ) 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) |
39 |
4
|
caovcl |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 𝐹 𝐵 ) ∈ P ) |
40 |
1 2
|
genpelv |
⊢ ( ( ( 𝐴 𝐹 𝐵 ) ∈ P ∧ 𝐶 ∈ P ) → ( 𝑥 ∈ ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) ↔ ∃ 𝑡 ∈ ( 𝐴 𝐹 𝐵 ) ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) |
41 |
39 40
|
stoic3 |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑥 ∈ ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) ↔ ∃ 𝑡 ∈ ( 𝐴 𝐹 𝐵 ) ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) |
42 |
1 2
|
genpelv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑡 ∈ ( 𝐴 𝐹 𝐵 ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 𝑡 = ( 𝑓 𝐺 𝑔 ) ) ) |
43 |
42
|
3adant3 |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑡 ∈ ( 𝐴 𝐹 𝐵 ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 𝑡 = ( 𝑓 𝐺 𝑔 ) ) ) |
44 |
43
|
anbi1d |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ( 𝑡 ∈ ( 𝐴 𝐹 𝐵 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ↔ ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) ) |
45 |
44
|
exbidv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ∃ 𝑡 ( 𝑡 ∈ ( 𝐴 𝐹 𝐵 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ↔ ∃ 𝑡 ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) ) |
46 |
|
df-rex |
⊢ ( ∃ 𝑡 ∈ ( 𝐴 𝐹 𝐵 ) ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ↔ ∃ 𝑡 ( 𝑡 ∈ ( 𝐴 𝐹 𝐵 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) |
47 |
|
19.41v |
⊢ ( ∃ 𝑡 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ↔ ( ∃ 𝑡 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
48 |
|
oveq1 |
⊢ ( 𝑡 = ( 𝑓 𝐺 𝑔 ) → ( 𝑡 𝐺 ℎ ) = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) |
49 |
48
|
eqeq2d |
⊢ ( 𝑡 = ( 𝑓 𝐺 𝑔 ) → ( 𝑥 = ( 𝑡 𝐺 ℎ ) ↔ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
50 |
49
|
rexbidv |
⊢ ( 𝑡 = ( 𝑓 𝐺 𝑔 ) → ( ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ↔ ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
51 |
50
|
pm5.32i |
⊢ ( ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ↔ ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
52 |
51
|
exbii |
⊢ ( ∃ 𝑡 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ↔ ∃ 𝑡 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
53 |
|
ovex |
⊢ ( 𝑓 𝐺 𝑔 ) ∈ V |
54 |
53
|
isseti |
⊢ ∃ 𝑡 𝑡 = ( 𝑓 𝐺 𝑔 ) |
55 |
54
|
biantrur |
⊢ ( ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ( ∃ 𝑡 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
56 |
47 52 55
|
3bitr4ri |
⊢ ( ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ∃ 𝑡 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) |
57 |
56
|
rexbii |
⊢ ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ∃ 𝑔 ∈ 𝐵 ∃ 𝑡 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) |
58 |
|
rexcom4 |
⊢ ( ∃ 𝑔 ∈ 𝐵 ∃ 𝑡 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ↔ ∃ 𝑡 ∃ 𝑔 ∈ 𝐵 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) |
59 |
57 58
|
bitri |
⊢ ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ∃ 𝑡 ∃ 𝑔 ∈ 𝐵 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) |
60 |
59
|
rexbii |
⊢ ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑡 ∃ 𝑔 ∈ 𝐵 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) |
61 |
|
rexcom4 |
⊢ ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑡 ∃ 𝑔 ∈ 𝐵 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ↔ ∃ 𝑡 ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) |
62 |
|
r19.41vv |
⊢ ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ↔ ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) |
63 |
62
|
exbii |
⊢ ( ∃ 𝑡 ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ↔ ∃ 𝑡 ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) |
64 |
60 61 63
|
3bitri |
⊢ ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ∃ 𝑡 ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) |
65 |
45 46 64
|
3bitr4g |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ∃ 𝑡 ∈ ( 𝐴 𝐹 𝐵 ) ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
66 |
41 65
|
bitrd |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑥 ∈ ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
67 |
34 38 66
|
3bitr4rd |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑥 ∈ ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) ↔ 𝑥 ∈ ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) ) ) |
68 |
67
|
eqrdv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) = ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) ) |
69 |
|
0npr |
⊢ ¬ ∅ ∈ P |
70 |
3 69
|
ndmovass |
⊢ ( ¬ ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) = ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) ) |
71 |
68 70
|
pm2.61i |
⊢ ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) = ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) |