Step |
Hyp |
Ref |
Expression |
1 |
|
genp.1 |
⊢ 𝐹 = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) |
2 |
|
genp.2 |
⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q ) |
3 |
|
genpcd.2 |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 𝐺 ℎ ) → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) |
4 |
|
ltrelnq |
⊢ <Q ⊆ ( Q × Q ) |
5 |
4
|
brel |
⊢ ( 𝑥 <Q 𝑓 → ( 𝑥 ∈ Q ∧ 𝑓 ∈ Q ) ) |
6 |
5
|
simpld |
⊢ ( 𝑥 <Q 𝑓 → 𝑥 ∈ Q ) |
7 |
1 2
|
genpelv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) ↔ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝑓 = ( 𝑔 𝐺 ℎ ) ) ) |
8 |
7
|
adantr |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ 𝑥 ∈ Q ) → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) ↔ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝑓 = ( 𝑔 𝐺 ℎ ) ) ) |
9 |
|
breq2 |
⊢ ( 𝑓 = ( 𝑔 𝐺 ℎ ) → ( 𝑥 <Q 𝑓 ↔ 𝑥 <Q ( 𝑔 𝐺 ℎ ) ) ) |
10 |
9
|
biimpd |
⊢ ( 𝑓 = ( 𝑔 𝐺 ℎ ) → ( 𝑥 <Q 𝑓 → 𝑥 <Q ( 𝑔 𝐺 ℎ ) ) ) |
11 |
10 3
|
sylan9r |
⊢ ( ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) ∧ 𝑓 = ( 𝑔 𝐺 ℎ ) ) → ( 𝑥 <Q 𝑓 → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) |
12 |
11
|
exp31 |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( 𝑥 ∈ Q → ( 𝑓 = ( 𝑔 𝐺 ℎ ) → ( 𝑥 <Q 𝑓 → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) ) |
13 |
12
|
an4s |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ) → ( 𝑥 ∈ Q → ( 𝑓 = ( 𝑔 𝐺 ℎ ) → ( 𝑥 <Q 𝑓 → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) ) |
14 |
13
|
impancom |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ 𝑥 ∈ Q ) → ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) → ( 𝑓 = ( 𝑔 𝐺 ℎ ) → ( 𝑥 <Q 𝑓 → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) ) |
15 |
14
|
rexlimdvv |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ 𝑥 ∈ Q ) → ( ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝑓 = ( 𝑔 𝐺 ℎ ) → ( 𝑥 <Q 𝑓 → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) |
16 |
8 15
|
sylbid |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ 𝑥 ∈ Q ) → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) → ( 𝑥 <Q 𝑓 → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) |
17 |
16
|
ex |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑥 ∈ Q → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) → ( 𝑥 <Q 𝑓 → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) ) |
18 |
6 17
|
syl5 |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑥 <Q 𝑓 → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) → ( 𝑥 <Q 𝑓 → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) ) |
19 |
18
|
com34 |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑥 <Q 𝑓 → ( 𝑥 <Q 𝑓 → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) ) |
20 |
19
|
pm2.43d |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑥 <Q 𝑓 → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) |
21 |
20
|
com23 |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) → ( 𝑥 <Q 𝑓 → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) |