| Step | Hyp | Ref | Expression | 
						
							| 1 |  | genp.1 | ⊢ 𝐹  =  ( 𝑤  ∈  P ,  𝑣  ∈  P  ↦  { 𝑥  ∣  ∃ 𝑦  ∈  𝑤 ∃ 𝑧  ∈  𝑣 𝑥  =  ( 𝑦 𝐺 𝑧 ) } ) | 
						
							| 2 |  | genp.2 | ⊢ ( ( 𝑦  ∈  Q  ∧  𝑧  ∈  Q )  →  ( 𝑦 𝐺 𝑧 )  ∈  Q ) | 
						
							| 3 |  | genpcd.2 | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  ∧  𝑥  ∈  Q )  →  ( 𝑥  <Q  ( 𝑔 𝐺 ℎ )  →  𝑥  ∈  ( 𝐴 𝐹 𝐵 ) ) ) | 
						
							| 4 |  | ltrelnq | ⊢  <Q   ⊆  ( Q  ×  Q ) | 
						
							| 5 | 4 | brel | ⊢ ( 𝑥  <Q  𝑓  →  ( 𝑥  ∈  Q  ∧  𝑓  ∈  Q ) ) | 
						
							| 6 | 5 | simpld | ⊢ ( 𝑥  <Q  𝑓  →  𝑥  ∈  Q ) | 
						
							| 7 | 1 2 | genpelv | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( 𝑓  ∈  ( 𝐴 𝐹 𝐵 )  ↔  ∃ 𝑔  ∈  𝐴 ∃ ℎ  ∈  𝐵 𝑓  =  ( 𝑔 𝐺 ℎ ) ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  𝑥  ∈  Q )  →  ( 𝑓  ∈  ( 𝐴 𝐹 𝐵 )  ↔  ∃ 𝑔  ∈  𝐴 ∃ ℎ  ∈  𝐵 𝑓  =  ( 𝑔 𝐺 ℎ ) ) ) | 
						
							| 9 |  | breq2 | ⊢ ( 𝑓  =  ( 𝑔 𝐺 ℎ )  →  ( 𝑥  <Q  𝑓  ↔  𝑥  <Q  ( 𝑔 𝐺 ℎ ) ) ) | 
						
							| 10 | 9 | biimpd | ⊢ ( 𝑓  =  ( 𝑔 𝐺 ℎ )  →  ( 𝑥  <Q  𝑓  →  𝑥  <Q  ( 𝑔 𝐺 ℎ ) ) ) | 
						
							| 11 | 10 3 | sylan9r | ⊢ ( ( ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  ∧  𝑥  ∈  Q )  ∧  𝑓  =  ( 𝑔 𝐺 ℎ ) )  →  ( 𝑥  <Q  𝑓  →  𝑥  ∈  ( 𝐴 𝐹 𝐵 ) ) ) | 
						
							| 12 | 11 | exp31 | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  →  ( 𝑥  ∈  Q  →  ( 𝑓  =  ( 𝑔 𝐺 ℎ )  →  ( 𝑥  <Q  𝑓  →  𝑥  ∈  ( 𝐴 𝐹 𝐵 ) ) ) ) ) | 
						
							| 13 | 12 | an4s | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  ( 𝑔  ∈  𝐴  ∧  ℎ  ∈  𝐵 ) )  →  ( 𝑥  ∈  Q  →  ( 𝑓  =  ( 𝑔 𝐺 ℎ )  →  ( 𝑥  <Q  𝑓  →  𝑥  ∈  ( 𝐴 𝐹 𝐵 ) ) ) ) ) | 
						
							| 14 | 13 | impancom | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  𝑥  ∈  Q )  →  ( ( 𝑔  ∈  𝐴  ∧  ℎ  ∈  𝐵 )  →  ( 𝑓  =  ( 𝑔 𝐺 ℎ )  →  ( 𝑥  <Q  𝑓  →  𝑥  ∈  ( 𝐴 𝐹 𝐵 ) ) ) ) ) | 
						
							| 15 | 14 | rexlimdvv | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  𝑥  ∈  Q )  →  ( ∃ 𝑔  ∈  𝐴 ∃ ℎ  ∈  𝐵 𝑓  =  ( 𝑔 𝐺 ℎ )  →  ( 𝑥  <Q  𝑓  →  𝑥  ∈  ( 𝐴 𝐹 𝐵 ) ) ) ) | 
						
							| 16 | 8 15 | sylbid | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  𝑥  ∈  Q )  →  ( 𝑓  ∈  ( 𝐴 𝐹 𝐵 )  →  ( 𝑥  <Q  𝑓  →  𝑥  ∈  ( 𝐴 𝐹 𝐵 ) ) ) ) | 
						
							| 17 | 16 | ex | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( 𝑥  ∈  Q  →  ( 𝑓  ∈  ( 𝐴 𝐹 𝐵 )  →  ( 𝑥  <Q  𝑓  →  𝑥  ∈  ( 𝐴 𝐹 𝐵 ) ) ) ) ) | 
						
							| 18 | 6 17 | syl5 | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( 𝑥  <Q  𝑓  →  ( 𝑓  ∈  ( 𝐴 𝐹 𝐵 )  →  ( 𝑥  <Q  𝑓  →  𝑥  ∈  ( 𝐴 𝐹 𝐵 ) ) ) ) ) | 
						
							| 19 | 18 | com34 | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( 𝑥  <Q  𝑓  →  ( 𝑥  <Q  𝑓  →  ( 𝑓  ∈  ( 𝐴 𝐹 𝐵 )  →  𝑥  ∈  ( 𝐴 𝐹 𝐵 ) ) ) ) ) | 
						
							| 20 | 19 | pm2.43d | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( 𝑥  <Q  𝑓  →  ( 𝑓  ∈  ( 𝐴 𝐹 𝐵 )  →  𝑥  ∈  ( 𝐴 𝐹 𝐵 ) ) ) ) | 
						
							| 21 | 20 | com23 | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( 𝑓  ∈  ( 𝐴 𝐹 𝐵 )  →  ( 𝑥  <Q  𝑓  →  𝑥  ∈  ( 𝐴 𝐹 𝐵 ) ) ) ) |