Step |
Hyp |
Ref |
Expression |
1 |
|
genp.1 |
⊢ 𝐹 = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) |
2 |
|
genp.2 |
⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q ) |
3 |
|
genpcl.3 |
⊢ ( ℎ ∈ Q → ( 𝑓 <Q 𝑔 ↔ ( ℎ 𝐺 𝑓 ) <Q ( ℎ 𝐺 𝑔 ) ) ) |
4 |
|
genpcl.4 |
⊢ ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) |
5 |
|
genpcl.5 |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 𝐺 ℎ ) → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) |
6 |
1 2
|
genpn0 |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ∅ ⊊ ( 𝐴 𝐹 𝐵 ) ) |
7 |
1 2
|
genpss |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 𝐹 𝐵 ) ⊆ Q ) |
8 |
|
vex |
⊢ 𝑥 ∈ V |
9 |
|
vex |
⊢ 𝑦 ∈ V |
10 |
8 9 3
|
caovord |
⊢ ( 𝑧 ∈ Q → ( 𝑥 <Q 𝑦 ↔ ( 𝑧 𝐺 𝑥 ) <Q ( 𝑧 𝐺 𝑦 ) ) ) |
11 |
1 2 10 4
|
genpnnp |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ¬ ( 𝐴 𝐹 𝐵 ) = Q ) |
12 |
|
dfpss2 |
⊢ ( ( 𝐴 𝐹 𝐵 ) ⊊ Q ↔ ( ( 𝐴 𝐹 𝐵 ) ⊆ Q ∧ ¬ ( 𝐴 𝐹 𝐵 ) = Q ) ) |
13 |
7 11 12
|
sylanbrc |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 𝐹 𝐵 ) ⊊ Q ) |
14 |
1 2 5
|
genpcd |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) → ( 𝑥 <Q 𝑓 → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) |
15 |
14
|
alrimdv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) → ∀ 𝑥 ( 𝑥 <Q 𝑓 → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) |
16 |
|
vex |
⊢ 𝑧 ∈ V |
17 |
|
vex |
⊢ 𝑤 ∈ V |
18 |
16 17 3
|
caovord |
⊢ ( 𝑣 ∈ Q → ( 𝑧 <Q 𝑤 ↔ ( 𝑣 𝐺 𝑧 ) <Q ( 𝑣 𝐺 𝑤 ) ) ) |
19 |
16 17 4
|
caovcom |
⊢ ( 𝑧 𝐺 𝑤 ) = ( 𝑤 𝐺 𝑧 ) |
20 |
1 2 18 19
|
genpnmax |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) → ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) 𝑓 <Q 𝑥 ) ) |
21 |
15 20
|
jcad |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) → ( ∀ 𝑥 ( 𝑥 <Q 𝑓 → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ∧ ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) 𝑓 <Q 𝑥 ) ) ) |
22 |
21
|
ralrimiv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ∀ 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) ( ∀ 𝑥 ( 𝑥 <Q 𝑓 → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ∧ ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) 𝑓 <Q 𝑥 ) ) |
23 |
|
elnp |
⊢ ( ( 𝐴 𝐹 𝐵 ) ∈ P ↔ ( ( ∅ ⊊ ( 𝐴 𝐹 𝐵 ) ∧ ( 𝐴 𝐹 𝐵 ) ⊊ Q ) ∧ ∀ 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) ( ∀ 𝑥 ( 𝑥 <Q 𝑓 → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ∧ ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) 𝑓 <Q 𝑥 ) ) ) |
24 |
6 13 22 23
|
syl21anbrc |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 𝐹 𝐵 ) ∈ P ) |