| Step | Hyp | Ref | Expression | 
						
							| 1 |  | genp.1 | ⊢ 𝐹  =  ( 𝑤  ∈  P ,  𝑣  ∈  P  ↦  { 𝑥  ∣  ∃ 𝑦  ∈  𝑤 ∃ 𝑧  ∈  𝑣 𝑥  =  ( 𝑦 𝐺 𝑧 ) } ) | 
						
							| 2 |  | genp.2 | ⊢ ( ( 𝑦  ∈  Q  ∧  𝑧  ∈  Q )  →  ( 𝑦 𝐺 𝑧 )  ∈  Q ) | 
						
							| 3 |  | genpcl.3 | ⊢ ( ℎ  ∈  Q  →  ( 𝑓  <Q  𝑔  ↔  ( ℎ 𝐺 𝑓 )  <Q  ( ℎ 𝐺 𝑔 ) ) ) | 
						
							| 4 |  | genpcl.4 | ⊢ ( 𝑥 𝐺 𝑦 )  =  ( 𝑦 𝐺 𝑥 ) | 
						
							| 5 |  | genpcl.5 | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  ∧  𝑥  ∈  Q )  →  ( 𝑥  <Q  ( 𝑔 𝐺 ℎ )  →  𝑥  ∈  ( 𝐴 𝐹 𝐵 ) ) ) | 
						
							| 6 | 1 2 | genpn0 | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ∅  ⊊  ( 𝐴 𝐹 𝐵 ) ) | 
						
							| 7 | 1 2 | genpss | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( 𝐴 𝐹 𝐵 )  ⊆  Q ) | 
						
							| 8 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 9 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 10 | 8 9 3 | caovord | ⊢ ( 𝑧  ∈  Q  →  ( 𝑥  <Q  𝑦  ↔  ( 𝑧 𝐺 𝑥 )  <Q  ( 𝑧 𝐺 𝑦 ) ) ) | 
						
							| 11 | 1 2 10 4 | genpnnp | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ¬  ( 𝐴 𝐹 𝐵 )  =  Q ) | 
						
							| 12 |  | dfpss2 | ⊢ ( ( 𝐴 𝐹 𝐵 )  ⊊  Q  ↔  ( ( 𝐴 𝐹 𝐵 )  ⊆  Q  ∧  ¬  ( 𝐴 𝐹 𝐵 )  =  Q ) ) | 
						
							| 13 | 7 11 12 | sylanbrc | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( 𝐴 𝐹 𝐵 )  ⊊  Q ) | 
						
							| 14 | 1 2 5 | genpcd | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( 𝑓  ∈  ( 𝐴 𝐹 𝐵 )  →  ( 𝑥  <Q  𝑓  →  𝑥  ∈  ( 𝐴 𝐹 𝐵 ) ) ) ) | 
						
							| 15 | 14 | alrimdv | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( 𝑓  ∈  ( 𝐴 𝐹 𝐵 )  →  ∀ 𝑥 ( 𝑥  <Q  𝑓  →  𝑥  ∈  ( 𝐴 𝐹 𝐵 ) ) ) ) | 
						
							| 16 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 17 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 18 | 16 17 3 | caovord | ⊢ ( 𝑣  ∈  Q  →  ( 𝑧  <Q  𝑤  ↔  ( 𝑣 𝐺 𝑧 )  <Q  ( 𝑣 𝐺 𝑤 ) ) ) | 
						
							| 19 | 16 17 4 | caovcom | ⊢ ( 𝑧 𝐺 𝑤 )  =  ( 𝑤 𝐺 𝑧 ) | 
						
							| 20 | 1 2 18 19 | genpnmax | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( 𝑓  ∈  ( 𝐴 𝐹 𝐵 )  →  ∃ 𝑥  ∈  ( 𝐴 𝐹 𝐵 ) 𝑓  <Q  𝑥 ) ) | 
						
							| 21 | 15 20 | jcad | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( 𝑓  ∈  ( 𝐴 𝐹 𝐵 )  →  ( ∀ 𝑥 ( 𝑥  <Q  𝑓  →  𝑥  ∈  ( 𝐴 𝐹 𝐵 ) )  ∧  ∃ 𝑥  ∈  ( 𝐴 𝐹 𝐵 ) 𝑓  <Q  𝑥 ) ) ) | 
						
							| 22 | 21 | ralrimiv | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ∀ 𝑓  ∈  ( 𝐴 𝐹 𝐵 ) ( ∀ 𝑥 ( 𝑥  <Q  𝑓  →  𝑥  ∈  ( 𝐴 𝐹 𝐵 ) )  ∧  ∃ 𝑥  ∈  ( 𝐴 𝐹 𝐵 ) 𝑓  <Q  𝑥 ) ) | 
						
							| 23 |  | elnp | ⊢ ( ( 𝐴 𝐹 𝐵 )  ∈  P  ↔  ( ( ∅  ⊊  ( 𝐴 𝐹 𝐵 )  ∧  ( 𝐴 𝐹 𝐵 )  ⊊  Q )  ∧  ∀ 𝑓  ∈  ( 𝐴 𝐹 𝐵 ) ( ∀ 𝑥 ( 𝑥  <Q  𝑓  →  𝑥  ∈  ( 𝐴 𝐹 𝐵 ) )  ∧  ∃ 𝑥  ∈  ( 𝐴 𝐹 𝐵 ) 𝑓  <Q  𝑥 ) ) ) | 
						
							| 24 | 6 13 22 23 | syl21anbrc | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( 𝐴 𝐹 𝐵 )  ∈  P ) |