Step |
Hyp |
Ref |
Expression |
1 |
|
genp.1 |
⊢ 𝐹 = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) |
2 |
|
genp.2 |
⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q ) |
3 |
|
elprnq |
⊢ ( ( 𝑤 ∈ P ∧ 𝑦 ∈ 𝑤 ) → 𝑦 ∈ Q ) |
4 |
|
elprnq |
⊢ ( ( 𝑣 ∈ P ∧ 𝑧 ∈ 𝑣 ) → 𝑧 ∈ Q ) |
5 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑦 𝐺 𝑧 ) → ( 𝑥 ∈ Q ↔ ( 𝑦 𝐺 𝑧 ) ∈ Q ) ) |
6 |
2 5
|
syl5ibrcom |
⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑥 = ( 𝑦 𝐺 𝑧 ) → 𝑥 ∈ Q ) ) |
7 |
3 4 6
|
syl2an |
⊢ ( ( ( 𝑤 ∈ P ∧ 𝑦 ∈ 𝑤 ) ∧ ( 𝑣 ∈ P ∧ 𝑧 ∈ 𝑣 ) ) → ( 𝑥 = ( 𝑦 𝐺 𝑧 ) → 𝑥 ∈ Q ) ) |
8 |
7
|
an4s |
⊢ ( ( ( 𝑤 ∈ P ∧ 𝑣 ∈ P ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑧 ∈ 𝑣 ) ) → ( 𝑥 = ( 𝑦 𝐺 𝑧 ) → 𝑥 ∈ Q ) ) |
9 |
8
|
rexlimdvva |
⊢ ( ( 𝑤 ∈ P ∧ 𝑣 ∈ P ) → ( ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) → 𝑥 ∈ Q ) ) |
10 |
9
|
abssdv |
⊢ ( ( 𝑤 ∈ P ∧ 𝑣 ∈ P ) → { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ⊆ Q ) |
11 |
|
nqex |
⊢ Q ∈ V |
12 |
|
ssexg |
⊢ ( ( { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ⊆ Q ∧ Q ∈ V ) → { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ∈ V ) |
13 |
10 11 12
|
sylancl |
⊢ ( ( 𝑤 ∈ P ∧ 𝑣 ∈ P ) → { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ∈ V ) |
14 |
13
|
rgen2 |
⊢ ∀ 𝑤 ∈ P ∀ 𝑣 ∈ P { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ∈ V |
15 |
1
|
fnmpo |
⊢ ( ∀ 𝑤 ∈ P ∀ 𝑣 ∈ P { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ∈ V → 𝐹 Fn ( P × P ) ) |
16 |
|
fndm |
⊢ ( 𝐹 Fn ( P × P ) → dom 𝐹 = ( P × P ) ) |
17 |
14 15 16
|
mp2b |
⊢ dom 𝐹 = ( P × P ) |