Metamath Proof Explorer


Theorem genpelv

Description: Membership in value of general operation (addition or multiplication) on positive reals. (Contributed by NM, 13-Mar-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypotheses genp.1 𝐹 = ( 𝑤P , 𝑣P ↦ { 𝑥 ∣ ∃ 𝑦𝑤𝑧𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } )
genp.2 ( ( 𝑦Q𝑧Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q )
Assertion genpelv ( ( 𝐴P𝐵P ) → ( 𝐶 ∈ ( 𝐴 𝐹 𝐵 ) ↔ ∃ 𝑔𝐴𝐵 𝐶 = ( 𝑔 𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 genp.1 𝐹 = ( 𝑤P , 𝑣P ↦ { 𝑥 ∣ ∃ 𝑦𝑤𝑧𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } )
2 genp.2 ( ( 𝑦Q𝑧Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q )
3 1 2 genpv ( ( 𝐴P𝐵P ) → ( 𝐴 𝐹 𝐵 ) = { 𝑓 ∣ ∃ 𝑔𝐴𝐵 𝑓 = ( 𝑔 𝐺 ) } )
4 3 eleq2d ( ( 𝐴P𝐵P ) → ( 𝐶 ∈ ( 𝐴 𝐹 𝐵 ) ↔ 𝐶 ∈ { 𝑓 ∣ ∃ 𝑔𝐴𝐵 𝑓 = ( 𝑔 𝐺 ) } ) )
5 id ( 𝐶 = ( 𝑔 𝐺 ) → 𝐶 = ( 𝑔 𝐺 ) )
6 ovex ( 𝑔 𝐺 ) ∈ V
7 5 6 eqeltrdi ( 𝐶 = ( 𝑔 𝐺 ) → 𝐶 ∈ V )
8 7 rexlimivw ( ∃ 𝐵 𝐶 = ( 𝑔 𝐺 ) → 𝐶 ∈ V )
9 8 rexlimivw ( ∃ 𝑔𝐴𝐵 𝐶 = ( 𝑔 𝐺 ) → 𝐶 ∈ V )
10 eqeq1 ( 𝑓 = 𝐶 → ( 𝑓 = ( 𝑔 𝐺 ) ↔ 𝐶 = ( 𝑔 𝐺 ) ) )
11 10 2rexbidv ( 𝑓 = 𝐶 → ( ∃ 𝑔𝐴𝐵 𝑓 = ( 𝑔 𝐺 ) ↔ ∃ 𝑔𝐴𝐵 𝐶 = ( 𝑔 𝐺 ) ) )
12 9 11 elab3 ( 𝐶 ∈ { 𝑓 ∣ ∃ 𝑔𝐴𝐵 𝑓 = ( 𝑔 𝐺 ) } ↔ ∃ 𝑔𝐴𝐵 𝐶 = ( 𝑔 𝐺 ) )
13 4 12 bitrdi ( ( 𝐴P𝐵P ) → ( 𝐶 ∈ ( 𝐴 𝐹 𝐵 ) ↔ ∃ 𝑔𝐴𝐵 𝐶 = ( 𝑔 𝐺 ) ) )