Step |
Hyp |
Ref |
Expression |
1 |
|
genp.1 |
⊢ 𝐹 = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) |
2 |
|
genp.2 |
⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q ) |
3 |
1 2
|
genpv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 𝐹 𝐵 ) = { 𝑓 ∣ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝑓 = ( 𝑔 𝐺 ℎ ) } ) |
4 |
3
|
eleq2d |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐶 ∈ ( 𝐴 𝐹 𝐵 ) ↔ 𝐶 ∈ { 𝑓 ∣ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝑓 = ( 𝑔 𝐺 ℎ ) } ) ) |
5 |
|
id |
⊢ ( 𝐶 = ( 𝑔 𝐺 ℎ ) → 𝐶 = ( 𝑔 𝐺 ℎ ) ) |
6 |
|
ovex |
⊢ ( 𝑔 𝐺 ℎ ) ∈ V |
7 |
5 6
|
eqeltrdi |
⊢ ( 𝐶 = ( 𝑔 𝐺 ℎ ) → 𝐶 ∈ V ) |
8 |
7
|
rexlimivw |
⊢ ( ∃ ℎ ∈ 𝐵 𝐶 = ( 𝑔 𝐺 ℎ ) → 𝐶 ∈ V ) |
9 |
8
|
rexlimivw |
⊢ ( ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝐶 = ( 𝑔 𝐺 ℎ ) → 𝐶 ∈ V ) |
10 |
|
eqeq1 |
⊢ ( 𝑓 = 𝐶 → ( 𝑓 = ( 𝑔 𝐺 ℎ ) ↔ 𝐶 = ( 𝑔 𝐺 ℎ ) ) ) |
11 |
10
|
2rexbidv |
⊢ ( 𝑓 = 𝐶 → ( ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝑓 = ( 𝑔 𝐺 ℎ ) ↔ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝐶 = ( 𝑔 𝐺 ℎ ) ) ) |
12 |
9 11
|
elab3 |
⊢ ( 𝐶 ∈ { 𝑓 ∣ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝑓 = ( 𝑔 𝐺 ℎ ) } ↔ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝐶 = ( 𝑔 𝐺 ℎ ) ) |
13 |
4 12
|
bitrdi |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐶 ∈ ( 𝐴 𝐹 𝐵 ) ↔ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝐶 = ( 𝑔 𝐺 ℎ ) ) ) |