Step |
Hyp |
Ref |
Expression |
1 |
|
genp.1 |
⊢ 𝐹 = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) |
2 |
|
genp.2 |
⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q ) |
3 |
|
prn0 |
⊢ ( 𝐴 ∈ P → 𝐴 ≠ ∅ ) |
4 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ 𝐴 ) |
5 |
3 4
|
sylib |
⊢ ( 𝐴 ∈ P → ∃ 𝑓 𝑓 ∈ 𝐴 ) |
6 |
|
prn0 |
⊢ ( 𝐵 ∈ P → 𝐵 ≠ ∅ ) |
7 |
|
n0 |
⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑔 𝑔 ∈ 𝐵 ) |
8 |
6 7
|
sylib |
⊢ ( 𝐵 ∈ P → ∃ 𝑔 𝑔 ∈ 𝐵 ) |
9 |
5 8
|
anim12i |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ∃ 𝑓 𝑓 ∈ 𝐴 ∧ ∃ 𝑔 𝑔 ∈ 𝐵 ) ) |
10 |
1 2
|
genpprecl |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐵 ) → ( 𝑓 𝐺 𝑔 ) ∈ ( 𝐴 𝐹 𝐵 ) ) ) |
11 |
|
ne0i |
⊢ ( ( 𝑓 𝐺 𝑔 ) ∈ ( 𝐴 𝐹 𝐵 ) → ( 𝐴 𝐹 𝐵 ) ≠ ∅ ) |
12 |
|
0pss |
⊢ ( ∅ ⊊ ( 𝐴 𝐹 𝐵 ) ↔ ( 𝐴 𝐹 𝐵 ) ≠ ∅ ) |
13 |
11 12
|
sylibr |
⊢ ( ( 𝑓 𝐺 𝑔 ) ∈ ( 𝐴 𝐹 𝐵 ) → ∅ ⊊ ( 𝐴 𝐹 𝐵 ) ) |
14 |
10 13
|
syl6 |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐵 ) → ∅ ⊊ ( 𝐴 𝐹 𝐵 ) ) ) |
15 |
14
|
expcomd |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑔 ∈ 𝐵 → ( 𝑓 ∈ 𝐴 → ∅ ⊊ ( 𝐴 𝐹 𝐵 ) ) ) ) |
16 |
15
|
exlimdv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ∃ 𝑔 𝑔 ∈ 𝐵 → ( 𝑓 ∈ 𝐴 → ∅ ⊊ ( 𝐴 𝐹 𝐵 ) ) ) ) |
17 |
16
|
com23 |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑓 ∈ 𝐴 → ( ∃ 𝑔 𝑔 ∈ 𝐵 → ∅ ⊊ ( 𝐴 𝐹 𝐵 ) ) ) ) |
18 |
17
|
exlimdv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ∃ 𝑓 𝑓 ∈ 𝐴 → ( ∃ 𝑔 𝑔 ∈ 𝐵 → ∅ ⊊ ( 𝐴 𝐹 𝐵 ) ) ) ) |
19 |
18
|
impd |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( ∃ 𝑓 𝑓 ∈ 𝐴 ∧ ∃ 𝑔 𝑔 ∈ 𝐵 ) → ∅ ⊊ ( 𝐴 𝐹 𝐵 ) ) ) |
20 |
9 19
|
mpd |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ∅ ⊊ ( 𝐴 𝐹 𝐵 ) ) |