Metamath Proof Explorer


Theorem genpn0

Description: The result of an operation on positive reals is not empty. (Contributed by NM, 28-Feb-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypotheses genp.1 𝐹 = ( 𝑤P , 𝑣P ↦ { 𝑥 ∣ ∃ 𝑦𝑤𝑧𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } )
genp.2 ( ( 𝑦Q𝑧Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q )
Assertion genpn0 ( ( 𝐴P𝐵P ) → ∅ ⊊ ( 𝐴 𝐹 𝐵 ) )

Proof

Step Hyp Ref Expression
1 genp.1 𝐹 = ( 𝑤P , 𝑣P ↦ { 𝑥 ∣ ∃ 𝑦𝑤𝑧𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } )
2 genp.2 ( ( 𝑦Q𝑧Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q )
3 prn0 ( 𝐴P𝐴 ≠ ∅ )
4 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑓 𝑓𝐴 )
5 3 4 sylib ( 𝐴P → ∃ 𝑓 𝑓𝐴 )
6 prn0 ( 𝐵P𝐵 ≠ ∅ )
7 n0 ( 𝐵 ≠ ∅ ↔ ∃ 𝑔 𝑔𝐵 )
8 6 7 sylib ( 𝐵P → ∃ 𝑔 𝑔𝐵 )
9 5 8 anim12i ( ( 𝐴P𝐵P ) → ( ∃ 𝑓 𝑓𝐴 ∧ ∃ 𝑔 𝑔𝐵 ) )
10 1 2 genpprecl ( ( 𝐴P𝐵P ) → ( ( 𝑓𝐴𝑔𝐵 ) → ( 𝑓 𝐺 𝑔 ) ∈ ( 𝐴 𝐹 𝐵 ) ) )
11 ne0i ( ( 𝑓 𝐺 𝑔 ) ∈ ( 𝐴 𝐹 𝐵 ) → ( 𝐴 𝐹 𝐵 ) ≠ ∅ )
12 0pss ( ∅ ⊊ ( 𝐴 𝐹 𝐵 ) ↔ ( 𝐴 𝐹 𝐵 ) ≠ ∅ )
13 11 12 sylibr ( ( 𝑓 𝐺 𝑔 ) ∈ ( 𝐴 𝐹 𝐵 ) → ∅ ⊊ ( 𝐴 𝐹 𝐵 ) )
14 10 13 syl6 ( ( 𝐴P𝐵P ) → ( ( 𝑓𝐴𝑔𝐵 ) → ∅ ⊊ ( 𝐴 𝐹 𝐵 ) ) )
15 14 expcomd ( ( 𝐴P𝐵P ) → ( 𝑔𝐵 → ( 𝑓𝐴 → ∅ ⊊ ( 𝐴 𝐹 𝐵 ) ) ) )
16 15 exlimdv ( ( 𝐴P𝐵P ) → ( ∃ 𝑔 𝑔𝐵 → ( 𝑓𝐴 → ∅ ⊊ ( 𝐴 𝐹 𝐵 ) ) ) )
17 16 com23 ( ( 𝐴P𝐵P ) → ( 𝑓𝐴 → ( ∃ 𝑔 𝑔𝐵 → ∅ ⊊ ( 𝐴 𝐹 𝐵 ) ) ) )
18 17 exlimdv ( ( 𝐴P𝐵P ) → ( ∃ 𝑓 𝑓𝐴 → ( ∃ 𝑔 𝑔𝐵 → ∅ ⊊ ( 𝐴 𝐹 𝐵 ) ) ) )
19 18 impd ( ( 𝐴P𝐵P ) → ( ( ∃ 𝑓 𝑓𝐴 ∧ ∃ 𝑔 𝑔𝐵 ) → ∅ ⊊ ( 𝐴 𝐹 𝐵 ) ) )
20 9 19 mpd ( ( 𝐴P𝐵P ) → ∅ ⊊ ( 𝐴 𝐹 𝐵 ) )