| Step | Hyp | Ref | Expression | 
						
							| 1 |  | genp.1 | ⊢ 𝐹  =  ( 𝑤  ∈  P ,  𝑣  ∈  P  ↦  { 𝑥  ∣  ∃ 𝑦  ∈  𝑤 ∃ 𝑧  ∈  𝑣 𝑥  =  ( 𝑦 𝐺 𝑧 ) } ) | 
						
							| 2 |  | genp.2 | ⊢ ( ( 𝑦  ∈  Q  ∧  𝑧  ∈  Q )  →  ( 𝑦 𝐺 𝑧 )  ∈  Q ) | 
						
							| 3 |  | genpnmax.2 | ⊢ ( 𝑣  ∈  Q  →  ( 𝑧  <Q  𝑤  ↔  ( 𝑣 𝐺 𝑧 )  <Q  ( 𝑣 𝐺 𝑤 ) ) ) | 
						
							| 4 |  | genpnmax.3 | ⊢ ( 𝑧 𝐺 𝑤 )  =  ( 𝑤 𝐺 𝑧 ) | 
						
							| 5 | 1 2 | genpelv | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( 𝑓  ∈  ( 𝐴 𝐹 𝐵 )  ↔  ∃ 𝑔  ∈  𝐴 ∃ ℎ  ∈  𝐵 𝑓  =  ( 𝑔 𝐺 ℎ ) ) ) | 
						
							| 6 |  | prnmax | ⊢ ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  →  ∃ 𝑦  ∈  𝐴 𝑔  <Q  𝑦 ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  →  ∃ 𝑦  ∈  𝐴 𝑔  <Q  𝑦 ) | 
						
							| 8 | 1 2 | genpprecl | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( ( 𝑦  ∈  𝐴  ∧  ℎ  ∈  𝐵 )  →  ( 𝑦 𝐺 ℎ )  ∈  ( 𝐴 𝐹 𝐵 ) ) ) | 
						
							| 9 | 8 | exp4b | ⊢ ( 𝐴  ∈  P  →  ( 𝐵  ∈  P  →  ( 𝑦  ∈  𝐴  →  ( ℎ  ∈  𝐵  →  ( 𝑦 𝐺 ℎ )  ∈  ( 𝐴 𝐹 𝐵 ) ) ) ) ) | 
						
							| 10 | 9 | com34 | ⊢ ( 𝐴  ∈  P  →  ( 𝐵  ∈  P  →  ( ℎ  ∈  𝐵  →  ( 𝑦  ∈  𝐴  →  ( 𝑦 𝐺 ℎ )  ∈  ( 𝐴 𝐹 𝐵 ) ) ) ) ) | 
						
							| 11 | 10 | imp32 | ⊢ ( ( 𝐴  ∈  P  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  →  ( 𝑦  ∈  𝐴  →  ( 𝑦 𝐺 ℎ )  ∈  ( 𝐴 𝐹 𝐵 ) ) ) | 
						
							| 12 |  | elprnq | ⊢ ( ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 )  →  ℎ  ∈  Q ) | 
						
							| 13 |  | vex | ⊢ 𝑔  ∈  V | 
						
							| 14 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 15 |  | vex | ⊢ ℎ  ∈  V | 
						
							| 16 | 13 14 3 15 4 | caovord2 | ⊢ ( ℎ  ∈  Q  →  ( 𝑔  <Q  𝑦  ↔  ( 𝑔 𝐺 ℎ )  <Q  ( 𝑦 𝐺 ℎ ) ) ) | 
						
							| 17 | 16 | biimpd | ⊢ ( ℎ  ∈  Q  →  ( 𝑔  <Q  𝑦  →  ( 𝑔 𝐺 ℎ )  <Q  ( 𝑦 𝐺 ℎ ) ) ) | 
						
							| 18 | 12 17 | syl | ⊢ ( ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 )  →  ( 𝑔  <Q  𝑦  →  ( 𝑔 𝐺 ℎ )  <Q  ( 𝑦 𝐺 ℎ ) ) ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝐴  ∈  P  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  →  ( 𝑔  <Q  𝑦  →  ( 𝑔 𝐺 ℎ )  <Q  ( 𝑦 𝐺 ℎ ) ) ) | 
						
							| 20 | 11 19 | anim12d | ⊢ ( ( 𝐴  ∈  P  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  →  ( ( 𝑦  ∈  𝐴  ∧  𝑔  <Q  𝑦 )  →  ( ( 𝑦 𝐺 ℎ )  ∈  ( 𝐴 𝐹 𝐵 )  ∧  ( 𝑔 𝐺 ℎ )  <Q  ( 𝑦 𝐺 ℎ ) ) ) ) | 
						
							| 21 |  | breq2 | ⊢ ( 𝑥  =  ( 𝑦 𝐺 ℎ )  →  ( ( 𝑔 𝐺 ℎ )  <Q  𝑥  ↔  ( 𝑔 𝐺 ℎ )  <Q  ( 𝑦 𝐺 ℎ ) ) ) | 
						
							| 22 | 21 | rspcev | ⊢ ( ( ( 𝑦 𝐺 ℎ )  ∈  ( 𝐴 𝐹 𝐵 )  ∧  ( 𝑔 𝐺 ℎ )  <Q  ( 𝑦 𝐺 ℎ ) )  →  ∃ 𝑥  ∈  ( 𝐴 𝐹 𝐵 ) ( 𝑔 𝐺 ℎ )  <Q  𝑥 ) | 
						
							| 23 | 20 22 | syl6 | ⊢ ( ( 𝐴  ∈  P  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  →  ( ( 𝑦  ∈  𝐴  ∧  𝑔  <Q  𝑦 )  →  ∃ 𝑥  ∈  ( 𝐴 𝐹 𝐵 ) ( 𝑔 𝐺 ℎ )  <Q  𝑥 ) ) | 
						
							| 24 | 23 | adantlr | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  →  ( ( 𝑦  ∈  𝐴  ∧  𝑔  <Q  𝑦 )  →  ∃ 𝑥  ∈  ( 𝐴 𝐹 𝐵 ) ( 𝑔 𝐺 ℎ )  <Q  𝑥 ) ) | 
						
							| 25 | 24 | expd | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  →  ( 𝑦  ∈  𝐴  →  ( 𝑔  <Q  𝑦  →  ∃ 𝑥  ∈  ( 𝐴 𝐹 𝐵 ) ( 𝑔 𝐺 ℎ )  <Q  𝑥 ) ) ) | 
						
							| 26 | 25 | rexlimdv | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  →  ( ∃ 𝑦  ∈  𝐴 𝑔  <Q  𝑦  →  ∃ 𝑥  ∈  ( 𝐴 𝐹 𝐵 ) ( 𝑔 𝐺 ℎ )  <Q  𝑥 ) ) | 
						
							| 27 | 7 26 | mpd | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  →  ∃ 𝑥  ∈  ( 𝐴 𝐹 𝐵 ) ( 𝑔 𝐺 ℎ )  <Q  𝑥 ) | 
						
							| 28 | 27 | an4s | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  ( 𝑔  ∈  𝐴  ∧  ℎ  ∈  𝐵 ) )  →  ∃ 𝑥  ∈  ( 𝐴 𝐹 𝐵 ) ( 𝑔 𝐺 ℎ )  <Q  𝑥 ) | 
						
							| 29 |  | breq1 | ⊢ ( 𝑓  =  ( 𝑔 𝐺 ℎ )  →  ( 𝑓  <Q  𝑥  ↔  ( 𝑔 𝐺 ℎ )  <Q  𝑥 ) ) | 
						
							| 30 | 29 | rexbidv | ⊢ ( 𝑓  =  ( 𝑔 𝐺 ℎ )  →  ( ∃ 𝑥  ∈  ( 𝐴 𝐹 𝐵 ) 𝑓  <Q  𝑥  ↔  ∃ 𝑥  ∈  ( 𝐴 𝐹 𝐵 ) ( 𝑔 𝐺 ℎ )  <Q  𝑥 ) ) | 
						
							| 31 | 28 30 | imbitrrid | ⊢ ( 𝑓  =  ( 𝑔 𝐺 ℎ )  →  ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  ( 𝑔  ∈  𝐴  ∧  ℎ  ∈  𝐵 ) )  →  ∃ 𝑥  ∈  ( 𝐴 𝐹 𝐵 ) 𝑓  <Q  𝑥 ) ) | 
						
							| 32 | 31 | expdcom | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( ( 𝑔  ∈  𝐴  ∧  ℎ  ∈  𝐵 )  →  ( 𝑓  =  ( 𝑔 𝐺 ℎ )  →  ∃ 𝑥  ∈  ( 𝐴 𝐹 𝐵 ) 𝑓  <Q  𝑥 ) ) ) | 
						
							| 33 | 32 | rexlimdvv | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( ∃ 𝑔  ∈  𝐴 ∃ ℎ  ∈  𝐵 𝑓  =  ( 𝑔 𝐺 ℎ )  →  ∃ 𝑥  ∈  ( 𝐴 𝐹 𝐵 ) 𝑓  <Q  𝑥 ) ) | 
						
							| 34 | 5 33 | sylbid | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( 𝑓  ∈  ( 𝐴 𝐹 𝐵 )  →  ∃ 𝑥  ∈  ( 𝐴 𝐹 𝐵 ) 𝑓  <Q  𝑥 ) ) |