Step |
Hyp |
Ref |
Expression |
1 |
|
genp.1 |
⊢ 𝐹 = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) |
2 |
|
genp.2 |
⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q ) |
3 |
|
genpnmax.2 |
⊢ ( 𝑣 ∈ Q → ( 𝑧 <Q 𝑤 ↔ ( 𝑣 𝐺 𝑧 ) <Q ( 𝑣 𝐺 𝑤 ) ) ) |
4 |
|
genpnmax.3 |
⊢ ( 𝑧 𝐺 𝑤 ) = ( 𝑤 𝐺 𝑧 ) |
5 |
1 2
|
genpelv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) ↔ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝑓 = ( 𝑔 𝐺 ℎ ) ) ) |
6 |
|
prnmax |
⊢ ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝐴 𝑔 <Q 𝑦 ) |
7 |
6
|
adantr |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ∃ 𝑦 ∈ 𝐴 𝑔 <Q 𝑦 ) |
8 |
1 2
|
genpprecl |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝑦 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) → ( 𝑦 𝐺 ℎ ) ∈ ( 𝐴 𝐹 𝐵 ) ) ) |
9 |
8
|
exp4b |
⊢ ( 𝐴 ∈ P → ( 𝐵 ∈ P → ( 𝑦 ∈ 𝐴 → ( ℎ ∈ 𝐵 → ( 𝑦 𝐺 ℎ ) ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) ) |
10 |
9
|
com34 |
⊢ ( 𝐴 ∈ P → ( 𝐵 ∈ P → ( ℎ ∈ 𝐵 → ( 𝑦 ∈ 𝐴 → ( 𝑦 𝐺 ℎ ) ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) ) |
11 |
10
|
imp32 |
⊢ ( ( 𝐴 ∈ P ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( 𝑦 ∈ 𝐴 → ( 𝑦 𝐺 ℎ ) ∈ ( 𝐴 𝐹 𝐵 ) ) ) |
12 |
|
elprnq |
⊢ ( ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) → ℎ ∈ Q ) |
13 |
|
vex |
⊢ 𝑔 ∈ V |
14 |
|
vex |
⊢ 𝑦 ∈ V |
15 |
|
vex |
⊢ ℎ ∈ V |
16 |
13 14 3 15 4
|
caovord2 |
⊢ ( ℎ ∈ Q → ( 𝑔 <Q 𝑦 ↔ ( 𝑔 𝐺 ℎ ) <Q ( 𝑦 𝐺 ℎ ) ) ) |
17 |
16
|
biimpd |
⊢ ( ℎ ∈ Q → ( 𝑔 <Q 𝑦 → ( 𝑔 𝐺 ℎ ) <Q ( 𝑦 𝐺 ℎ ) ) ) |
18 |
12 17
|
syl |
⊢ ( ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) → ( 𝑔 <Q 𝑦 → ( 𝑔 𝐺 ℎ ) <Q ( 𝑦 𝐺 ℎ ) ) ) |
19 |
18
|
adantl |
⊢ ( ( 𝐴 ∈ P ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( 𝑔 <Q 𝑦 → ( 𝑔 𝐺 ℎ ) <Q ( 𝑦 𝐺 ℎ ) ) ) |
20 |
11 19
|
anim12d |
⊢ ( ( 𝐴 ∈ P ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑦 ∈ 𝐴 ∧ 𝑔 <Q 𝑦 ) → ( ( 𝑦 𝐺 ℎ ) ∈ ( 𝐴 𝐹 𝐵 ) ∧ ( 𝑔 𝐺 ℎ ) <Q ( 𝑦 𝐺 ℎ ) ) ) ) |
21 |
|
breq2 |
⊢ ( 𝑥 = ( 𝑦 𝐺 ℎ ) → ( ( 𝑔 𝐺 ℎ ) <Q 𝑥 ↔ ( 𝑔 𝐺 ℎ ) <Q ( 𝑦 𝐺 ℎ ) ) ) |
22 |
21
|
rspcev |
⊢ ( ( ( 𝑦 𝐺 ℎ ) ∈ ( 𝐴 𝐹 𝐵 ) ∧ ( 𝑔 𝐺 ℎ ) <Q ( 𝑦 𝐺 ℎ ) ) → ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ( 𝑔 𝐺 ℎ ) <Q 𝑥 ) |
23 |
20 22
|
syl6 |
⊢ ( ( 𝐴 ∈ P ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑦 ∈ 𝐴 ∧ 𝑔 <Q 𝑦 ) → ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ( 𝑔 𝐺 ℎ ) <Q 𝑥 ) ) |
24 |
23
|
adantlr |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑦 ∈ 𝐴 ∧ 𝑔 <Q 𝑦 ) → ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ( 𝑔 𝐺 ℎ ) <Q 𝑥 ) ) |
25 |
24
|
expd |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( 𝑦 ∈ 𝐴 → ( 𝑔 <Q 𝑦 → ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ( 𝑔 𝐺 ℎ ) <Q 𝑥 ) ) ) |
26 |
25
|
rexlimdv |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( ∃ 𝑦 ∈ 𝐴 𝑔 <Q 𝑦 → ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ( 𝑔 𝐺 ℎ ) <Q 𝑥 ) ) |
27 |
7 26
|
mpd |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ( 𝑔 𝐺 ℎ ) <Q 𝑥 ) |
28 |
27
|
an4s |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ) → ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ( 𝑔 𝐺 ℎ ) <Q 𝑥 ) |
29 |
|
breq1 |
⊢ ( 𝑓 = ( 𝑔 𝐺 ℎ ) → ( 𝑓 <Q 𝑥 ↔ ( 𝑔 𝐺 ℎ ) <Q 𝑥 ) ) |
30 |
29
|
rexbidv |
⊢ ( 𝑓 = ( 𝑔 𝐺 ℎ ) → ( ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) 𝑓 <Q 𝑥 ↔ ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ( 𝑔 𝐺 ℎ ) <Q 𝑥 ) ) |
31 |
28 30
|
syl5ibr |
⊢ ( 𝑓 = ( 𝑔 𝐺 ℎ ) → ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ) → ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) 𝑓 <Q 𝑥 ) ) |
32 |
31
|
expdcom |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) → ( 𝑓 = ( 𝑔 𝐺 ℎ ) → ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) 𝑓 <Q 𝑥 ) ) ) |
33 |
32
|
rexlimdvv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝑓 = ( 𝑔 𝐺 ℎ ) → ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) 𝑓 <Q 𝑥 ) ) |
34 |
5 33
|
sylbid |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) → ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) 𝑓 <Q 𝑥 ) ) |