| Step | Hyp | Ref | Expression | 
						
							| 1 |  | genp.1 | ⊢ 𝐹  =  ( 𝑤  ∈  P ,  𝑣  ∈  P  ↦  { 𝑥  ∣  ∃ 𝑦  ∈  𝑤 ∃ 𝑧  ∈  𝑣 𝑥  =  ( 𝑦 𝐺 𝑧 ) } ) | 
						
							| 2 |  | genp.2 | ⊢ ( ( 𝑦  ∈  Q  ∧  𝑧  ∈  Q )  →  ( 𝑦 𝐺 𝑧 )  ∈  Q ) | 
						
							| 3 |  | genpnnp.3 | ⊢ ( 𝑧  ∈  Q  →  ( 𝑥  <Q  𝑦  ↔  ( 𝑧 𝐺 𝑥 )  <Q  ( 𝑧 𝐺 𝑦 ) ) ) | 
						
							| 4 |  | genpnnp.4 | ⊢ ( 𝑥 𝐺 𝑦 )  =  ( 𝑦 𝐺 𝑥 ) | 
						
							| 5 |  | prpssnq | ⊢ ( 𝐴  ∈  P  →  𝐴  ⊊  Q ) | 
						
							| 6 |  | pssnel | ⊢ ( 𝐴  ⊊  Q  →  ∃ 𝑤 ( 𝑤  ∈  Q  ∧  ¬  𝑤  ∈  𝐴 ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝐴  ∈  P  →  ∃ 𝑤 ( 𝑤  ∈  Q  ∧  ¬  𝑤  ∈  𝐴 ) ) | 
						
							| 8 |  | prpssnq | ⊢ ( 𝐵  ∈  P  →  𝐵  ⊊  Q ) | 
						
							| 9 |  | pssnel | ⊢ ( 𝐵  ⊊  Q  →  ∃ 𝑣 ( 𝑣  ∈  Q  ∧  ¬  𝑣  ∈  𝐵 ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝐵  ∈  P  →  ∃ 𝑣 ( 𝑣  ∈  Q  ∧  ¬  𝑣  ∈  𝐵 ) ) | 
						
							| 11 | 7 10 | anim12i | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( ∃ 𝑤 ( 𝑤  ∈  Q  ∧  ¬  𝑤  ∈  𝐴 )  ∧  ∃ 𝑣 ( 𝑣  ∈  Q  ∧  ¬  𝑣  ∈  𝐵 ) ) ) | 
						
							| 12 |  | exdistrv | ⊢ ( ∃ 𝑤 ∃ 𝑣 ( ( 𝑤  ∈  Q  ∧  ¬  𝑤  ∈  𝐴 )  ∧  ( 𝑣  ∈  Q  ∧  ¬  𝑣  ∈  𝐵 ) )  ↔  ( ∃ 𝑤 ( 𝑤  ∈  Q  ∧  ¬  𝑤  ∈  𝐴 )  ∧  ∃ 𝑣 ( 𝑣  ∈  Q  ∧  ¬  𝑣  ∈  𝐵 ) ) ) | 
						
							| 13 | 11 12 | sylibr | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ∃ 𝑤 ∃ 𝑣 ( ( 𝑤  ∈  Q  ∧  ¬  𝑤  ∈  𝐴 )  ∧  ( 𝑣  ∈  Q  ∧  ¬  𝑣  ∈  𝐵 ) ) ) | 
						
							| 14 |  | prub | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑓  ∈  𝐴 )  ∧  𝑤  ∈  Q )  →  ( ¬  𝑤  ∈  𝐴  →  𝑓  <Q  𝑤 ) ) | 
						
							| 15 |  | prub | ⊢ ( ( ( 𝐵  ∈  P  ∧  𝑔  ∈  𝐵 )  ∧  𝑣  ∈  Q )  →  ( ¬  𝑣  ∈  𝐵  →  𝑔  <Q  𝑣 ) ) | 
						
							| 16 | 14 15 | im2anan9 | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝑓  ∈  𝐴 )  ∧  𝑤  ∈  Q )  ∧  ( ( 𝐵  ∈  P  ∧  𝑔  ∈  𝐵 )  ∧  𝑣  ∈  Q ) )  →  ( ( ¬  𝑤  ∈  𝐴  ∧  ¬  𝑣  ∈  𝐵 )  →  ( 𝑓  <Q  𝑤  ∧  𝑔  <Q  𝑣 ) ) ) | 
						
							| 17 |  | elprnq | ⊢ ( ( 𝐴  ∈  P  ∧  𝑓  ∈  𝐴 )  →  𝑓  ∈  Q ) | 
						
							| 18 | 17 | anim1i | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑓  ∈  𝐴 )  ∧  𝑤  ∈  Q )  →  ( 𝑓  ∈  Q  ∧  𝑤  ∈  Q ) ) | 
						
							| 19 |  | elprnq | ⊢ ( ( 𝐵  ∈  P  ∧  𝑔  ∈  𝐵 )  →  𝑔  ∈  Q ) | 
						
							| 20 | 19 | anim1i | ⊢ ( ( ( 𝐵  ∈  P  ∧  𝑔  ∈  𝐵 )  ∧  𝑣  ∈  Q )  →  ( 𝑔  ∈  Q  ∧  𝑣  ∈  Q ) ) | 
						
							| 21 |  | ltsonq | ⊢  <Q   Or  Q | 
						
							| 22 |  | so2nr | ⊢ ( (  <Q   Or  Q  ∧  ( 𝑓  ∈  Q  ∧  𝑤  ∈  Q ) )  →  ¬  ( 𝑓  <Q  𝑤  ∧  𝑤  <Q  𝑓 ) ) | 
						
							| 23 | 21 22 | mpan | ⊢ ( ( 𝑓  ∈  Q  ∧  𝑤  ∈  Q )  →  ¬  ( 𝑓  <Q  𝑤  ∧  𝑤  <Q  𝑓 ) ) | 
						
							| 24 | 23 | ad2antrr | ⊢ ( ( ( ( 𝑓  ∈  Q  ∧  𝑤  ∈  Q )  ∧  ( 𝑔  ∈  Q  ∧  𝑣  ∈  Q ) )  ∧  ( 𝑤 𝐺 𝑣 )  =  ( 𝑓 𝐺 𝑔 ) )  →  ¬  ( 𝑓  <Q  𝑤  ∧  𝑤  <Q  𝑓 ) ) | 
						
							| 25 |  | simpr | ⊢ ( ( 𝑔  ∈  Q  ∧  𝑣  ∈  Q )  →  𝑣  ∈  Q ) | 
						
							| 26 |  | simpl | ⊢ ( ( 𝑓  ∈  Q  ∧  𝑤  ∈  Q )  →  𝑓  ∈  Q ) | 
						
							| 27 | 25 26 | anim12i | ⊢ ( ( ( 𝑔  ∈  Q  ∧  𝑣  ∈  Q )  ∧  ( 𝑓  ∈  Q  ∧  𝑤  ∈  Q ) )  →  ( 𝑣  ∈  Q  ∧  𝑓  ∈  Q ) ) | 
						
							| 28 | 27 | ancoms | ⊢ ( ( ( 𝑓  ∈  Q  ∧  𝑤  ∈  Q )  ∧  ( 𝑔  ∈  Q  ∧  𝑣  ∈  Q ) )  →  ( 𝑣  ∈  Q  ∧  𝑓  ∈  Q ) ) | 
						
							| 29 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 30 |  | vex | ⊢ 𝑣  ∈  V | 
						
							| 31 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 32 |  | vex | ⊢ 𝑔  ∈  V | 
						
							| 33 | 29 30 3 31 4 32 | caovord3 | ⊢ ( ( ( 𝑣  ∈  Q  ∧  𝑓  ∈  Q )  ∧  ( 𝑤 𝐺 𝑣 )  =  ( 𝑓 𝐺 𝑔 ) )  →  ( 𝑤  <Q  𝑓  ↔  𝑔  <Q  𝑣 ) ) | 
						
							| 34 | 33 | anbi2d | ⊢ ( ( ( 𝑣  ∈  Q  ∧  𝑓  ∈  Q )  ∧  ( 𝑤 𝐺 𝑣 )  =  ( 𝑓 𝐺 𝑔 ) )  →  ( ( 𝑓  <Q  𝑤  ∧  𝑤  <Q  𝑓 )  ↔  ( 𝑓  <Q  𝑤  ∧  𝑔  <Q  𝑣 ) ) ) | 
						
							| 35 | 28 34 | sylan | ⊢ ( ( ( ( 𝑓  ∈  Q  ∧  𝑤  ∈  Q )  ∧  ( 𝑔  ∈  Q  ∧  𝑣  ∈  Q ) )  ∧  ( 𝑤 𝐺 𝑣 )  =  ( 𝑓 𝐺 𝑔 ) )  →  ( ( 𝑓  <Q  𝑤  ∧  𝑤  <Q  𝑓 )  ↔  ( 𝑓  <Q  𝑤  ∧  𝑔  <Q  𝑣 ) ) ) | 
						
							| 36 | 24 35 | mtbid | ⊢ ( ( ( ( 𝑓  ∈  Q  ∧  𝑤  ∈  Q )  ∧  ( 𝑔  ∈  Q  ∧  𝑣  ∈  Q ) )  ∧  ( 𝑤 𝐺 𝑣 )  =  ( 𝑓 𝐺 𝑔 ) )  →  ¬  ( 𝑓  <Q  𝑤  ∧  𝑔  <Q  𝑣 ) ) | 
						
							| 37 | 36 | ex | ⊢ ( ( ( 𝑓  ∈  Q  ∧  𝑤  ∈  Q )  ∧  ( 𝑔  ∈  Q  ∧  𝑣  ∈  Q ) )  →  ( ( 𝑤 𝐺 𝑣 )  =  ( 𝑓 𝐺 𝑔 )  →  ¬  ( 𝑓  <Q  𝑤  ∧  𝑔  <Q  𝑣 ) ) ) | 
						
							| 38 | 37 | con2d | ⊢ ( ( ( 𝑓  ∈  Q  ∧  𝑤  ∈  Q )  ∧  ( 𝑔  ∈  Q  ∧  𝑣  ∈  Q ) )  →  ( ( 𝑓  <Q  𝑤  ∧  𝑔  <Q  𝑣 )  →  ¬  ( 𝑤 𝐺 𝑣 )  =  ( 𝑓 𝐺 𝑔 ) ) ) | 
						
							| 39 | 18 20 38 | syl2an | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝑓  ∈  𝐴 )  ∧  𝑤  ∈  Q )  ∧  ( ( 𝐵  ∈  P  ∧  𝑔  ∈  𝐵 )  ∧  𝑣  ∈  Q ) )  →  ( ( 𝑓  <Q  𝑤  ∧  𝑔  <Q  𝑣 )  →  ¬  ( 𝑤 𝐺 𝑣 )  =  ( 𝑓 𝐺 𝑔 ) ) ) | 
						
							| 40 | 16 39 | syld | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝑓  ∈  𝐴 )  ∧  𝑤  ∈  Q )  ∧  ( ( 𝐵  ∈  P  ∧  𝑔  ∈  𝐵 )  ∧  𝑣  ∈  Q ) )  →  ( ( ¬  𝑤  ∈  𝐴  ∧  ¬  𝑣  ∈  𝐵 )  →  ¬  ( 𝑤 𝐺 𝑣 )  =  ( 𝑓 𝐺 𝑔 ) ) ) | 
						
							| 41 | 40 | an4s | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝑓  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  𝑔  ∈  𝐵 ) )  ∧  ( 𝑤  ∈  Q  ∧  𝑣  ∈  Q ) )  →  ( ( ¬  𝑤  ∈  𝐴  ∧  ¬  𝑣  ∈  𝐵 )  →  ¬  ( 𝑤 𝐺 𝑣 )  =  ( 𝑓 𝐺 𝑔 ) ) ) | 
						
							| 42 | 41 | ex | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑓  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  𝑔  ∈  𝐵 ) )  →  ( ( 𝑤  ∈  Q  ∧  𝑣  ∈  Q )  →  ( ( ¬  𝑤  ∈  𝐴  ∧  ¬  𝑣  ∈  𝐵 )  →  ¬  ( 𝑤 𝐺 𝑣 )  =  ( 𝑓 𝐺 𝑔 ) ) ) ) | 
						
							| 43 | 42 | an4s | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  ( 𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐵 ) )  →  ( ( 𝑤  ∈  Q  ∧  𝑣  ∈  Q )  →  ( ( ¬  𝑤  ∈  𝐴  ∧  ¬  𝑣  ∈  𝐵 )  →  ¬  ( 𝑤 𝐺 𝑣 )  =  ( 𝑓 𝐺 𝑔 ) ) ) ) | 
						
							| 44 | 43 | ex | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( ( 𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐵 )  →  ( ( 𝑤  ∈  Q  ∧  𝑣  ∈  Q )  →  ( ( ¬  𝑤  ∈  𝐴  ∧  ¬  𝑣  ∈  𝐵 )  →  ¬  ( 𝑤 𝐺 𝑣 )  =  ( 𝑓 𝐺 𝑔 ) ) ) ) ) | 
						
							| 45 | 44 | com24 | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( ( ¬  𝑤  ∈  𝐴  ∧  ¬  𝑣  ∈  𝐵 )  →  ( ( 𝑤  ∈  Q  ∧  𝑣  ∈  Q )  →  ( ( 𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐵 )  →  ¬  ( 𝑤 𝐺 𝑣 )  =  ( 𝑓 𝐺 𝑔 ) ) ) ) ) | 
						
							| 46 | 45 | imp32 | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  ( ( ¬  𝑤  ∈  𝐴  ∧  ¬  𝑣  ∈  𝐵 )  ∧  ( 𝑤  ∈  Q  ∧  𝑣  ∈  Q ) ) )  →  ( ( 𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐵 )  →  ¬  ( 𝑤 𝐺 𝑣 )  =  ( 𝑓 𝐺 𝑔 ) ) ) | 
						
							| 47 | 46 | ralrimivv | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  ( ( ¬  𝑤  ∈  𝐴  ∧  ¬  𝑣  ∈  𝐵 )  ∧  ( 𝑤  ∈  Q  ∧  𝑣  ∈  Q ) ) )  →  ∀ 𝑓  ∈  𝐴 ∀ 𝑔  ∈  𝐵 ¬  ( 𝑤 𝐺 𝑣 )  =  ( 𝑓 𝐺 𝑔 ) ) | 
						
							| 48 |  | ralnex2 | ⊢ ( ∀ 𝑓  ∈  𝐴 ∀ 𝑔  ∈  𝐵 ¬  ( 𝑤 𝐺 𝑣 )  =  ( 𝑓 𝐺 𝑔 )  ↔  ¬  ∃ 𝑓  ∈  𝐴 ∃ 𝑔  ∈  𝐵 ( 𝑤 𝐺 𝑣 )  =  ( 𝑓 𝐺 𝑔 ) ) | 
						
							| 49 | 47 48 | sylib | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  ( ( ¬  𝑤  ∈  𝐴  ∧  ¬  𝑣  ∈  𝐵 )  ∧  ( 𝑤  ∈  Q  ∧  𝑣  ∈  Q ) ) )  →  ¬  ∃ 𝑓  ∈  𝐴 ∃ 𝑔  ∈  𝐵 ( 𝑤 𝐺 𝑣 )  =  ( 𝑓 𝐺 𝑔 ) ) | 
						
							| 50 | 1 2 | genpelv | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( ( 𝑤 𝐺 𝑣 )  ∈  ( 𝐴 𝐹 𝐵 )  ↔  ∃ 𝑓  ∈  𝐴 ∃ 𝑔  ∈  𝐵 ( 𝑤 𝐺 𝑣 )  =  ( 𝑓 𝐺 𝑔 ) ) ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  ( ( ¬  𝑤  ∈  𝐴  ∧  ¬  𝑣  ∈  𝐵 )  ∧  ( 𝑤  ∈  Q  ∧  𝑣  ∈  Q ) ) )  →  ( ( 𝑤 𝐺 𝑣 )  ∈  ( 𝐴 𝐹 𝐵 )  ↔  ∃ 𝑓  ∈  𝐴 ∃ 𝑔  ∈  𝐵 ( 𝑤 𝐺 𝑣 )  =  ( 𝑓 𝐺 𝑔 ) ) ) | 
						
							| 52 | 49 51 | mtbird | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  ( ( ¬  𝑤  ∈  𝐴  ∧  ¬  𝑣  ∈  𝐵 )  ∧  ( 𝑤  ∈  Q  ∧  𝑣  ∈  Q ) ) )  →  ¬  ( 𝑤 𝐺 𝑣 )  ∈  ( 𝐴 𝐹 𝐵 ) ) | 
						
							| 53 | 52 | expcom | ⊢ ( ( ( ¬  𝑤  ∈  𝐴  ∧  ¬  𝑣  ∈  𝐵 )  ∧  ( 𝑤  ∈  Q  ∧  𝑣  ∈  Q ) )  →  ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ¬  ( 𝑤 𝐺 𝑣 )  ∈  ( 𝐴 𝐹 𝐵 ) ) ) | 
						
							| 54 | 53 | ancoms | ⊢ ( ( ( 𝑤  ∈  Q  ∧  𝑣  ∈  Q )  ∧  ( ¬  𝑤  ∈  𝐴  ∧  ¬  𝑣  ∈  𝐵 ) )  →  ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ¬  ( 𝑤 𝐺 𝑣 )  ∈  ( 𝐴 𝐹 𝐵 ) ) ) | 
						
							| 55 | 54 | an4s | ⊢ ( ( ( 𝑤  ∈  Q  ∧  ¬  𝑤  ∈  𝐴 )  ∧  ( 𝑣  ∈  Q  ∧  ¬  𝑣  ∈  𝐵 ) )  →  ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ¬  ( 𝑤 𝐺 𝑣 )  ∈  ( 𝐴 𝐹 𝐵 ) ) ) | 
						
							| 56 | 2 | caovcl | ⊢ ( ( 𝑤  ∈  Q  ∧  𝑣  ∈  Q )  →  ( 𝑤 𝐺 𝑣 )  ∈  Q ) | 
						
							| 57 |  | eleq2 | ⊢ ( ( 𝐴 𝐹 𝐵 )  =  Q  →  ( ( 𝑤 𝐺 𝑣 )  ∈  ( 𝐴 𝐹 𝐵 )  ↔  ( 𝑤 𝐺 𝑣 )  ∈  Q ) ) | 
						
							| 58 | 57 | biimprcd | ⊢ ( ( 𝑤 𝐺 𝑣 )  ∈  Q  →  ( ( 𝐴 𝐹 𝐵 )  =  Q  →  ( 𝑤 𝐺 𝑣 )  ∈  ( 𝐴 𝐹 𝐵 ) ) ) | 
						
							| 59 | 58 | con3d | ⊢ ( ( 𝑤 𝐺 𝑣 )  ∈  Q  →  ( ¬  ( 𝑤 𝐺 𝑣 )  ∈  ( 𝐴 𝐹 𝐵 )  →  ¬  ( 𝐴 𝐹 𝐵 )  =  Q ) ) | 
						
							| 60 | 56 59 | syl | ⊢ ( ( 𝑤  ∈  Q  ∧  𝑣  ∈  Q )  →  ( ¬  ( 𝑤 𝐺 𝑣 )  ∈  ( 𝐴 𝐹 𝐵 )  →  ¬  ( 𝐴 𝐹 𝐵 )  =  Q ) ) | 
						
							| 61 | 60 | ad2ant2r | ⊢ ( ( ( 𝑤  ∈  Q  ∧  ¬  𝑤  ∈  𝐴 )  ∧  ( 𝑣  ∈  Q  ∧  ¬  𝑣  ∈  𝐵 ) )  →  ( ¬  ( 𝑤 𝐺 𝑣 )  ∈  ( 𝐴 𝐹 𝐵 )  →  ¬  ( 𝐴 𝐹 𝐵 )  =  Q ) ) | 
						
							| 62 | 55 61 | syldc | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( ( ( 𝑤  ∈  Q  ∧  ¬  𝑤  ∈  𝐴 )  ∧  ( 𝑣  ∈  Q  ∧  ¬  𝑣  ∈  𝐵 ) )  →  ¬  ( 𝐴 𝐹 𝐵 )  =  Q ) ) | 
						
							| 63 | 62 | exlimdvv | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( ∃ 𝑤 ∃ 𝑣 ( ( 𝑤  ∈  Q  ∧  ¬  𝑤  ∈  𝐴 )  ∧  ( 𝑣  ∈  Q  ∧  ¬  𝑣  ∈  𝐵 ) )  →  ¬  ( 𝐴 𝐹 𝐵 )  =  Q ) ) | 
						
							| 64 | 13 63 | mpd | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ¬  ( 𝐴 𝐹 𝐵 )  =  Q ) |