Step |
Hyp |
Ref |
Expression |
1 |
|
genp.1 |
⊢ 𝐹 = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) |
2 |
|
genp.2 |
⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q ) |
3 |
|
genpnnp.3 |
⊢ ( 𝑧 ∈ Q → ( 𝑥 <Q 𝑦 ↔ ( 𝑧 𝐺 𝑥 ) <Q ( 𝑧 𝐺 𝑦 ) ) ) |
4 |
|
genpnnp.4 |
⊢ ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) |
5 |
|
prpssnq |
⊢ ( 𝐴 ∈ P → 𝐴 ⊊ Q ) |
6 |
|
pssnel |
⊢ ( 𝐴 ⊊ Q → ∃ 𝑤 ( 𝑤 ∈ Q ∧ ¬ 𝑤 ∈ 𝐴 ) ) |
7 |
5 6
|
syl |
⊢ ( 𝐴 ∈ P → ∃ 𝑤 ( 𝑤 ∈ Q ∧ ¬ 𝑤 ∈ 𝐴 ) ) |
8 |
|
prpssnq |
⊢ ( 𝐵 ∈ P → 𝐵 ⊊ Q ) |
9 |
|
pssnel |
⊢ ( 𝐵 ⊊ Q → ∃ 𝑣 ( 𝑣 ∈ Q ∧ ¬ 𝑣 ∈ 𝐵 ) ) |
10 |
8 9
|
syl |
⊢ ( 𝐵 ∈ P → ∃ 𝑣 ( 𝑣 ∈ Q ∧ ¬ 𝑣 ∈ 𝐵 ) ) |
11 |
7 10
|
anim12i |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ∃ 𝑤 ( 𝑤 ∈ Q ∧ ¬ 𝑤 ∈ 𝐴 ) ∧ ∃ 𝑣 ( 𝑣 ∈ Q ∧ ¬ 𝑣 ∈ 𝐵 ) ) ) |
12 |
|
exdistrv |
⊢ ( ∃ 𝑤 ∃ 𝑣 ( ( 𝑤 ∈ Q ∧ ¬ 𝑤 ∈ 𝐴 ) ∧ ( 𝑣 ∈ Q ∧ ¬ 𝑣 ∈ 𝐵 ) ) ↔ ( ∃ 𝑤 ( 𝑤 ∈ Q ∧ ¬ 𝑤 ∈ 𝐴 ) ∧ ∃ 𝑣 ( 𝑣 ∈ Q ∧ ¬ 𝑣 ∈ 𝐵 ) ) ) |
13 |
11 12
|
sylibr |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ∃ 𝑤 ∃ 𝑣 ( ( 𝑤 ∈ Q ∧ ¬ 𝑤 ∈ 𝐴 ) ∧ ( 𝑣 ∈ Q ∧ ¬ 𝑣 ∈ 𝐵 ) ) ) |
14 |
|
prub |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑤 ∈ Q ) → ( ¬ 𝑤 ∈ 𝐴 → 𝑓 <Q 𝑤 ) ) |
15 |
|
prub |
⊢ ( ( ( 𝐵 ∈ P ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑣 ∈ Q ) → ( ¬ 𝑣 ∈ 𝐵 → 𝑔 <Q 𝑣 ) ) |
16 |
14 15
|
im2anan9 |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑤 ∈ Q ) ∧ ( ( 𝐵 ∈ P ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑣 ∈ Q ) ) → ( ( ¬ 𝑤 ∈ 𝐴 ∧ ¬ 𝑣 ∈ 𝐵 ) → ( 𝑓 <Q 𝑤 ∧ 𝑔 <Q 𝑣 ) ) ) |
17 |
|
elprnq |
⊢ ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) → 𝑓 ∈ Q ) |
18 |
17
|
anim1i |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑤 ∈ Q ) → ( 𝑓 ∈ Q ∧ 𝑤 ∈ Q ) ) |
19 |
|
elprnq |
⊢ ( ( 𝐵 ∈ P ∧ 𝑔 ∈ 𝐵 ) → 𝑔 ∈ Q ) |
20 |
19
|
anim1i |
⊢ ( ( ( 𝐵 ∈ P ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑣 ∈ Q ) → ( 𝑔 ∈ Q ∧ 𝑣 ∈ Q ) ) |
21 |
|
ltsonq |
⊢ <Q Or Q |
22 |
|
so2nr |
⊢ ( ( <Q Or Q ∧ ( 𝑓 ∈ Q ∧ 𝑤 ∈ Q ) ) → ¬ ( 𝑓 <Q 𝑤 ∧ 𝑤 <Q 𝑓 ) ) |
23 |
21 22
|
mpan |
⊢ ( ( 𝑓 ∈ Q ∧ 𝑤 ∈ Q ) → ¬ ( 𝑓 <Q 𝑤 ∧ 𝑤 <Q 𝑓 ) ) |
24 |
23
|
ad2antrr |
⊢ ( ( ( ( 𝑓 ∈ Q ∧ 𝑤 ∈ Q ) ∧ ( 𝑔 ∈ Q ∧ 𝑣 ∈ Q ) ) ∧ ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) → ¬ ( 𝑓 <Q 𝑤 ∧ 𝑤 <Q 𝑓 ) ) |
25 |
|
simpr |
⊢ ( ( 𝑔 ∈ Q ∧ 𝑣 ∈ Q ) → 𝑣 ∈ Q ) |
26 |
|
simpl |
⊢ ( ( 𝑓 ∈ Q ∧ 𝑤 ∈ Q ) → 𝑓 ∈ Q ) |
27 |
25 26
|
anim12i |
⊢ ( ( ( 𝑔 ∈ Q ∧ 𝑣 ∈ Q ) ∧ ( 𝑓 ∈ Q ∧ 𝑤 ∈ Q ) ) → ( 𝑣 ∈ Q ∧ 𝑓 ∈ Q ) ) |
28 |
27
|
ancoms |
⊢ ( ( ( 𝑓 ∈ Q ∧ 𝑤 ∈ Q ) ∧ ( 𝑔 ∈ Q ∧ 𝑣 ∈ Q ) ) → ( 𝑣 ∈ Q ∧ 𝑓 ∈ Q ) ) |
29 |
|
vex |
⊢ 𝑤 ∈ V |
30 |
|
vex |
⊢ 𝑣 ∈ V |
31 |
|
vex |
⊢ 𝑓 ∈ V |
32 |
|
vex |
⊢ 𝑔 ∈ V |
33 |
29 30 3 31 4 32
|
caovord3 |
⊢ ( ( ( 𝑣 ∈ Q ∧ 𝑓 ∈ Q ) ∧ ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) → ( 𝑤 <Q 𝑓 ↔ 𝑔 <Q 𝑣 ) ) |
34 |
33
|
anbi2d |
⊢ ( ( ( 𝑣 ∈ Q ∧ 𝑓 ∈ Q ) ∧ ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) → ( ( 𝑓 <Q 𝑤 ∧ 𝑤 <Q 𝑓 ) ↔ ( 𝑓 <Q 𝑤 ∧ 𝑔 <Q 𝑣 ) ) ) |
35 |
28 34
|
sylan |
⊢ ( ( ( ( 𝑓 ∈ Q ∧ 𝑤 ∈ Q ) ∧ ( 𝑔 ∈ Q ∧ 𝑣 ∈ Q ) ) ∧ ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) → ( ( 𝑓 <Q 𝑤 ∧ 𝑤 <Q 𝑓 ) ↔ ( 𝑓 <Q 𝑤 ∧ 𝑔 <Q 𝑣 ) ) ) |
36 |
24 35
|
mtbid |
⊢ ( ( ( ( 𝑓 ∈ Q ∧ 𝑤 ∈ Q ) ∧ ( 𝑔 ∈ Q ∧ 𝑣 ∈ Q ) ) ∧ ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) → ¬ ( 𝑓 <Q 𝑤 ∧ 𝑔 <Q 𝑣 ) ) |
37 |
36
|
ex |
⊢ ( ( ( 𝑓 ∈ Q ∧ 𝑤 ∈ Q ) ∧ ( 𝑔 ∈ Q ∧ 𝑣 ∈ Q ) ) → ( ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) → ¬ ( 𝑓 <Q 𝑤 ∧ 𝑔 <Q 𝑣 ) ) ) |
38 |
37
|
con2d |
⊢ ( ( ( 𝑓 ∈ Q ∧ 𝑤 ∈ Q ) ∧ ( 𝑔 ∈ Q ∧ 𝑣 ∈ Q ) ) → ( ( 𝑓 <Q 𝑤 ∧ 𝑔 <Q 𝑣 ) → ¬ ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) ) |
39 |
18 20 38
|
syl2an |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑤 ∈ Q ) ∧ ( ( 𝐵 ∈ P ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑣 ∈ Q ) ) → ( ( 𝑓 <Q 𝑤 ∧ 𝑔 <Q 𝑣 ) → ¬ ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) ) |
40 |
16 39
|
syld |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑤 ∈ Q ) ∧ ( ( 𝐵 ∈ P ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑣 ∈ Q ) ) → ( ( ¬ 𝑤 ∈ 𝐴 ∧ ¬ 𝑣 ∈ 𝐵 ) → ¬ ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) ) |
41 |
40
|
an4s |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ 𝑔 ∈ 𝐵 ) ) ∧ ( 𝑤 ∈ Q ∧ 𝑣 ∈ Q ) ) → ( ( ¬ 𝑤 ∈ 𝐴 ∧ ¬ 𝑣 ∈ 𝐵 ) → ¬ ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) ) |
42 |
41
|
ex |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ 𝑔 ∈ 𝐵 ) ) → ( ( 𝑤 ∈ Q ∧ 𝑣 ∈ Q ) → ( ( ¬ 𝑤 ∈ 𝐴 ∧ ¬ 𝑣 ∈ 𝐵 ) → ¬ ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) ) ) |
43 |
42
|
an4s |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐵 ) ) → ( ( 𝑤 ∈ Q ∧ 𝑣 ∈ Q ) → ( ( ¬ 𝑤 ∈ 𝐴 ∧ ¬ 𝑣 ∈ 𝐵 ) → ¬ ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) ) ) |
44 |
43
|
ex |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐵 ) → ( ( 𝑤 ∈ Q ∧ 𝑣 ∈ Q ) → ( ( ¬ 𝑤 ∈ 𝐴 ∧ ¬ 𝑣 ∈ 𝐵 ) → ¬ ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) ) ) ) |
45 |
44
|
com24 |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( ¬ 𝑤 ∈ 𝐴 ∧ ¬ 𝑣 ∈ 𝐵 ) → ( ( 𝑤 ∈ Q ∧ 𝑣 ∈ Q ) → ( ( 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐵 ) → ¬ ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) ) ) ) |
46 |
45
|
imp32 |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( ( ¬ 𝑤 ∈ 𝐴 ∧ ¬ 𝑣 ∈ 𝐵 ) ∧ ( 𝑤 ∈ Q ∧ 𝑣 ∈ Q ) ) ) → ( ( 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐵 ) → ¬ ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) ) |
47 |
46
|
ralrimivv |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( ( ¬ 𝑤 ∈ 𝐴 ∧ ¬ 𝑣 ∈ 𝐵 ) ∧ ( 𝑤 ∈ Q ∧ 𝑣 ∈ Q ) ) ) → ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐵 ¬ ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) |
48 |
|
ralnex2 |
⊢ ( ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐵 ¬ ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ↔ ¬ ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) |
49 |
47 48
|
sylib |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( ( ¬ 𝑤 ∈ 𝐴 ∧ ¬ 𝑣 ∈ 𝐵 ) ∧ ( 𝑤 ∈ Q ∧ 𝑣 ∈ Q ) ) ) → ¬ ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) |
50 |
1 2
|
genpelv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝑤 𝐺 𝑣 ) ∈ ( 𝐴 𝐹 𝐵 ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) ) |
51 |
50
|
adantr |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( ( ¬ 𝑤 ∈ 𝐴 ∧ ¬ 𝑣 ∈ 𝐵 ) ∧ ( 𝑤 ∈ Q ∧ 𝑣 ∈ Q ) ) ) → ( ( 𝑤 𝐺 𝑣 ) ∈ ( 𝐴 𝐹 𝐵 ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) ) |
52 |
49 51
|
mtbird |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( ( ¬ 𝑤 ∈ 𝐴 ∧ ¬ 𝑣 ∈ 𝐵 ) ∧ ( 𝑤 ∈ Q ∧ 𝑣 ∈ Q ) ) ) → ¬ ( 𝑤 𝐺 𝑣 ) ∈ ( 𝐴 𝐹 𝐵 ) ) |
53 |
52
|
expcom |
⊢ ( ( ( ¬ 𝑤 ∈ 𝐴 ∧ ¬ 𝑣 ∈ 𝐵 ) ∧ ( 𝑤 ∈ Q ∧ 𝑣 ∈ Q ) ) → ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ¬ ( 𝑤 𝐺 𝑣 ) ∈ ( 𝐴 𝐹 𝐵 ) ) ) |
54 |
53
|
ancoms |
⊢ ( ( ( 𝑤 ∈ Q ∧ 𝑣 ∈ Q ) ∧ ( ¬ 𝑤 ∈ 𝐴 ∧ ¬ 𝑣 ∈ 𝐵 ) ) → ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ¬ ( 𝑤 𝐺 𝑣 ) ∈ ( 𝐴 𝐹 𝐵 ) ) ) |
55 |
54
|
an4s |
⊢ ( ( ( 𝑤 ∈ Q ∧ ¬ 𝑤 ∈ 𝐴 ) ∧ ( 𝑣 ∈ Q ∧ ¬ 𝑣 ∈ 𝐵 ) ) → ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ¬ ( 𝑤 𝐺 𝑣 ) ∈ ( 𝐴 𝐹 𝐵 ) ) ) |
56 |
2
|
caovcl |
⊢ ( ( 𝑤 ∈ Q ∧ 𝑣 ∈ Q ) → ( 𝑤 𝐺 𝑣 ) ∈ Q ) |
57 |
|
eleq2 |
⊢ ( ( 𝐴 𝐹 𝐵 ) = Q → ( ( 𝑤 𝐺 𝑣 ) ∈ ( 𝐴 𝐹 𝐵 ) ↔ ( 𝑤 𝐺 𝑣 ) ∈ Q ) ) |
58 |
57
|
biimprcd |
⊢ ( ( 𝑤 𝐺 𝑣 ) ∈ Q → ( ( 𝐴 𝐹 𝐵 ) = Q → ( 𝑤 𝐺 𝑣 ) ∈ ( 𝐴 𝐹 𝐵 ) ) ) |
59 |
58
|
con3d |
⊢ ( ( 𝑤 𝐺 𝑣 ) ∈ Q → ( ¬ ( 𝑤 𝐺 𝑣 ) ∈ ( 𝐴 𝐹 𝐵 ) → ¬ ( 𝐴 𝐹 𝐵 ) = Q ) ) |
60 |
56 59
|
syl |
⊢ ( ( 𝑤 ∈ Q ∧ 𝑣 ∈ Q ) → ( ¬ ( 𝑤 𝐺 𝑣 ) ∈ ( 𝐴 𝐹 𝐵 ) → ¬ ( 𝐴 𝐹 𝐵 ) = Q ) ) |
61 |
60
|
ad2ant2r |
⊢ ( ( ( 𝑤 ∈ Q ∧ ¬ 𝑤 ∈ 𝐴 ) ∧ ( 𝑣 ∈ Q ∧ ¬ 𝑣 ∈ 𝐵 ) ) → ( ¬ ( 𝑤 𝐺 𝑣 ) ∈ ( 𝐴 𝐹 𝐵 ) → ¬ ( 𝐴 𝐹 𝐵 ) = Q ) ) |
62 |
55 61
|
syldc |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( ( 𝑤 ∈ Q ∧ ¬ 𝑤 ∈ 𝐴 ) ∧ ( 𝑣 ∈ Q ∧ ¬ 𝑣 ∈ 𝐵 ) ) → ¬ ( 𝐴 𝐹 𝐵 ) = Q ) ) |
63 |
62
|
exlimdvv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ∃ 𝑤 ∃ 𝑣 ( ( 𝑤 ∈ Q ∧ ¬ 𝑤 ∈ 𝐴 ) ∧ ( 𝑣 ∈ Q ∧ ¬ 𝑣 ∈ 𝐵 ) ) → ¬ ( 𝐴 𝐹 𝐵 ) = Q ) ) |
64 |
13 63
|
mpd |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ¬ ( 𝐴 𝐹 𝐵 ) = Q ) |