| Step | Hyp | Ref | Expression | 
						
							| 1 |  | genp.1 | ⊢ 𝐹  =  ( 𝑤  ∈  P ,  𝑣  ∈  P  ↦  { 𝑥  ∣  ∃ 𝑦  ∈  𝑤 ∃ 𝑧  ∈  𝑣 𝑥  =  ( 𝑦 𝐺 𝑧 ) } ) | 
						
							| 2 |  | genp.2 | ⊢ ( ( 𝑦  ∈  Q  ∧  𝑧  ∈  Q )  →  ( 𝑦 𝐺 𝑧 )  ∈  Q ) | 
						
							| 3 | 1 2 | genpelv | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( 𝑓  ∈  ( 𝐴 𝐹 𝐵 )  ↔  ∃ 𝑔  ∈  𝐴 ∃ ℎ  ∈  𝐵 𝑓  =  ( 𝑔 𝐺 ℎ ) ) ) | 
						
							| 4 |  | elprnq | ⊢ ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  →  𝑔  ∈  Q ) | 
						
							| 5 | 4 | ex | ⊢ ( 𝐴  ∈  P  →  ( 𝑔  ∈  𝐴  →  𝑔  ∈  Q ) ) | 
						
							| 6 |  | elprnq | ⊢ ( ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 )  →  ℎ  ∈  Q ) | 
						
							| 7 | 6 | ex | ⊢ ( 𝐵  ∈  P  →  ( ℎ  ∈  𝐵  →  ℎ  ∈  Q ) ) | 
						
							| 8 | 5 7 | im2anan9 | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( ( 𝑔  ∈  𝐴  ∧  ℎ  ∈  𝐵 )  →  ( 𝑔  ∈  Q  ∧  ℎ  ∈  Q ) ) ) | 
						
							| 9 | 2 | caovcl | ⊢ ( ( 𝑔  ∈  Q  ∧  ℎ  ∈  Q )  →  ( 𝑔 𝐺 ℎ )  ∈  Q ) | 
						
							| 10 | 8 9 | syl6 | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( ( 𝑔  ∈  𝐴  ∧  ℎ  ∈  𝐵 )  →  ( 𝑔 𝐺 ℎ )  ∈  Q ) ) | 
						
							| 11 |  | eleq1a | ⊢ ( ( 𝑔 𝐺 ℎ )  ∈  Q  →  ( 𝑓  =  ( 𝑔 𝐺 ℎ )  →  𝑓  ∈  Q ) ) | 
						
							| 12 | 10 11 | syl6 | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( ( 𝑔  ∈  𝐴  ∧  ℎ  ∈  𝐵 )  →  ( 𝑓  =  ( 𝑔 𝐺 ℎ )  →  𝑓  ∈  Q ) ) ) | 
						
							| 13 | 12 | rexlimdvv | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( ∃ 𝑔  ∈  𝐴 ∃ ℎ  ∈  𝐵 𝑓  =  ( 𝑔 𝐺 ℎ )  →  𝑓  ∈  Q ) ) | 
						
							| 14 | 3 13 | sylbid | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( 𝑓  ∈  ( 𝐴 𝐹 𝐵 )  →  𝑓  ∈  Q ) ) | 
						
							| 15 | 14 | ssrdv | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( 𝐴 𝐹 𝐵 )  ⊆  Q ) |