Metamath Proof Explorer


Theorem genpss

Description: The result of an operation on positive reals is a subset of the positive fractions. (Contributed by NM, 18-Nov-1995) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypotheses genp.1 𝐹 = ( 𝑤P , 𝑣P ↦ { 𝑥 ∣ ∃ 𝑦𝑤𝑧𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } )
genp.2 ( ( 𝑦Q𝑧Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q )
Assertion genpss ( ( 𝐴P𝐵P ) → ( 𝐴 𝐹 𝐵 ) ⊆ Q )

Proof

Step Hyp Ref Expression
1 genp.1 𝐹 = ( 𝑤P , 𝑣P ↦ { 𝑥 ∣ ∃ 𝑦𝑤𝑧𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } )
2 genp.2 ( ( 𝑦Q𝑧Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q )
3 1 2 genpelv ( ( 𝐴P𝐵P ) → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) ↔ ∃ 𝑔𝐴𝐵 𝑓 = ( 𝑔 𝐺 ) ) )
4 elprnq ( ( 𝐴P𝑔𝐴 ) → 𝑔Q )
5 4 ex ( 𝐴P → ( 𝑔𝐴𝑔Q ) )
6 elprnq ( ( 𝐵P𝐵 ) → Q )
7 6 ex ( 𝐵P → ( 𝐵Q ) )
8 5 7 im2anan9 ( ( 𝐴P𝐵P ) → ( ( 𝑔𝐴𝐵 ) → ( 𝑔QQ ) ) )
9 2 caovcl ( ( 𝑔QQ ) → ( 𝑔 𝐺 ) ∈ Q )
10 8 9 syl6 ( ( 𝐴P𝐵P ) → ( ( 𝑔𝐴𝐵 ) → ( 𝑔 𝐺 ) ∈ Q ) )
11 eleq1a ( ( 𝑔 𝐺 ) ∈ Q → ( 𝑓 = ( 𝑔 𝐺 ) → 𝑓Q ) )
12 10 11 syl6 ( ( 𝐴P𝐵P ) → ( ( 𝑔𝐴𝐵 ) → ( 𝑓 = ( 𝑔 𝐺 ) → 𝑓Q ) ) )
13 12 rexlimdvv ( ( 𝐴P𝐵P ) → ( ∃ 𝑔𝐴𝐵 𝑓 = ( 𝑔 𝐺 ) → 𝑓Q ) )
14 3 13 sylbid ( ( 𝐴P𝐵P ) → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) → 𝑓Q ) )
15 14 ssrdv ( ( 𝐴P𝐵P ) → ( 𝐴 𝐹 𝐵 ) ⊆ Q )