Step |
Hyp |
Ref |
Expression |
1 |
|
genp.1 |
⊢ 𝐹 = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) |
2 |
|
genp.2 |
⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q ) |
3 |
1 2
|
genpelv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) ↔ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝑓 = ( 𝑔 𝐺 ℎ ) ) ) |
4 |
|
elprnq |
⊢ ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) → 𝑔 ∈ Q ) |
5 |
4
|
ex |
⊢ ( 𝐴 ∈ P → ( 𝑔 ∈ 𝐴 → 𝑔 ∈ Q ) ) |
6 |
|
elprnq |
⊢ ( ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) → ℎ ∈ Q ) |
7 |
6
|
ex |
⊢ ( 𝐵 ∈ P → ( ℎ ∈ 𝐵 → ℎ ∈ Q ) ) |
8 |
5 7
|
im2anan9 |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) → ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) ) ) |
9 |
2
|
caovcl |
⊢ ( ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) → ( 𝑔 𝐺 ℎ ) ∈ Q ) |
10 |
8 9
|
syl6 |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) → ( 𝑔 𝐺 ℎ ) ∈ Q ) ) |
11 |
|
eleq1a |
⊢ ( ( 𝑔 𝐺 ℎ ) ∈ Q → ( 𝑓 = ( 𝑔 𝐺 ℎ ) → 𝑓 ∈ Q ) ) |
12 |
10 11
|
syl6 |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) → ( 𝑓 = ( 𝑔 𝐺 ℎ ) → 𝑓 ∈ Q ) ) ) |
13 |
12
|
rexlimdvv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝑓 = ( 𝑔 𝐺 ℎ ) → 𝑓 ∈ Q ) ) |
14 |
3 13
|
sylbid |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) → 𝑓 ∈ Q ) ) |
15 |
14
|
ssrdv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 𝐹 𝐵 ) ⊆ Q ) |