Step |
Hyp |
Ref |
Expression |
1 |
|
genp.1 |
⊢ 𝐹 = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) |
2 |
|
genp.2 |
⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q ) |
3 |
|
oveq1 |
⊢ ( 𝑓 = 𝐴 → ( 𝑓 𝐹 𝑔 ) = ( 𝐴 𝐹 𝑔 ) ) |
4 |
|
rexeq |
⊢ ( 𝑓 = 𝐴 → ( ∃ 𝑦 ∈ 𝑓 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) ) ) |
5 |
4
|
abbidv |
⊢ ( 𝑓 = 𝐴 → { 𝑥 ∣ ∃ 𝑦 ∈ 𝑓 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) } = { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) |
6 |
3 5
|
eqeq12d |
⊢ ( 𝑓 = 𝐴 → ( ( 𝑓 𝐹 𝑔 ) = { 𝑥 ∣ ∃ 𝑦 ∈ 𝑓 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) } ↔ ( 𝐴 𝐹 𝑔 ) = { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) ) |
7 |
|
oveq2 |
⊢ ( 𝑔 = 𝐵 → ( 𝐴 𝐹 𝑔 ) = ( 𝐴 𝐹 𝐵 ) ) |
8 |
|
rexeq |
⊢ ( 𝑔 = 𝐵 → ( ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) ↔ ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 𝐺 𝑧 ) ) ) |
9 |
8
|
rexbidv |
⊢ ( 𝑔 = 𝐵 → ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 𝐺 𝑧 ) ) ) |
10 |
9
|
abbidv |
⊢ ( 𝑔 = 𝐵 → { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) } = { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) |
11 |
7 10
|
eqeq12d |
⊢ ( 𝑔 = 𝐵 → ( ( 𝐴 𝐹 𝑔 ) = { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) } ↔ ( 𝐴 𝐹 𝐵 ) = { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) ) |
12 |
|
elprnq |
⊢ ( ( 𝑓 ∈ P ∧ 𝑦 ∈ 𝑓 ) → 𝑦 ∈ Q ) |
13 |
|
elprnq |
⊢ ( ( 𝑔 ∈ P ∧ 𝑧 ∈ 𝑔 ) → 𝑧 ∈ Q ) |
14 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑦 𝐺 𝑧 ) → ( 𝑥 ∈ Q ↔ ( 𝑦 𝐺 𝑧 ) ∈ Q ) ) |
15 |
2 14
|
syl5ibrcom |
⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑥 = ( 𝑦 𝐺 𝑧 ) → 𝑥 ∈ Q ) ) |
16 |
12 13 15
|
syl2an |
⊢ ( ( ( 𝑓 ∈ P ∧ 𝑦 ∈ 𝑓 ) ∧ ( 𝑔 ∈ P ∧ 𝑧 ∈ 𝑔 ) ) → ( 𝑥 = ( 𝑦 𝐺 𝑧 ) → 𝑥 ∈ Q ) ) |
17 |
16
|
an4s |
⊢ ( ( ( 𝑓 ∈ P ∧ 𝑔 ∈ P ) ∧ ( 𝑦 ∈ 𝑓 ∧ 𝑧 ∈ 𝑔 ) ) → ( 𝑥 = ( 𝑦 𝐺 𝑧 ) → 𝑥 ∈ Q ) ) |
18 |
17
|
rexlimdvva |
⊢ ( ( 𝑓 ∈ P ∧ 𝑔 ∈ P ) → ( ∃ 𝑦 ∈ 𝑓 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) → 𝑥 ∈ Q ) ) |
19 |
18
|
abssdv |
⊢ ( ( 𝑓 ∈ P ∧ 𝑔 ∈ P ) → { 𝑥 ∣ ∃ 𝑦 ∈ 𝑓 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) } ⊆ Q ) |
20 |
|
nqex |
⊢ Q ∈ V |
21 |
|
ssexg |
⊢ ( ( { 𝑥 ∣ ∃ 𝑦 ∈ 𝑓 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) } ⊆ Q ∧ Q ∈ V ) → { 𝑥 ∣ ∃ 𝑦 ∈ 𝑓 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) } ∈ V ) |
22 |
19 20 21
|
sylancl |
⊢ ( ( 𝑓 ∈ P ∧ 𝑔 ∈ P ) → { 𝑥 ∣ ∃ 𝑦 ∈ 𝑓 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) } ∈ V ) |
23 |
|
rexeq |
⊢ ( 𝑤 = 𝑓 → ( ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) ↔ ∃ 𝑦 ∈ 𝑓 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) ) ) |
24 |
23
|
abbidv |
⊢ ( 𝑤 = 𝑓 → { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } = { 𝑥 ∣ ∃ 𝑦 ∈ 𝑓 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) |
25 |
|
rexeq |
⊢ ( 𝑣 = 𝑔 → ( ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) ↔ ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) ) ) |
26 |
25
|
rexbidv |
⊢ ( 𝑣 = 𝑔 → ( ∃ 𝑦 ∈ 𝑓 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) ↔ ∃ 𝑦 ∈ 𝑓 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) ) ) |
27 |
26
|
abbidv |
⊢ ( 𝑣 = 𝑔 → { 𝑥 ∣ ∃ 𝑦 ∈ 𝑓 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } = { 𝑥 ∣ ∃ 𝑦 ∈ 𝑓 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) |
28 |
24 27 1
|
ovmpog |
⊢ ( ( 𝑓 ∈ P ∧ 𝑔 ∈ P ∧ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑓 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) } ∈ V ) → ( 𝑓 𝐹 𝑔 ) = { 𝑥 ∣ ∃ 𝑦 ∈ 𝑓 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) |
29 |
22 28
|
mpd3an3 |
⊢ ( ( 𝑓 ∈ P ∧ 𝑔 ∈ P ) → ( 𝑓 𝐹 𝑔 ) = { 𝑥 ∣ ∃ 𝑦 ∈ 𝑓 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) |
30 |
6 11 29
|
vtocl2ga |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 𝐹 𝐵 ) = { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) |
31 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑓 → ( 𝑥 = ( 𝑦 𝐺 𝑧 ) ↔ 𝑓 = ( 𝑦 𝐺 𝑧 ) ) ) |
32 |
31
|
2rexbidv |
⊢ ( 𝑥 = 𝑓 → ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 𝐺 𝑧 ) ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑓 = ( 𝑦 𝐺 𝑧 ) ) ) |
33 |
|
oveq1 |
⊢ ( 𝑦 = 𝑔 → ( 𝑦 𝐺 𝑧 ) = ( 𝑔 𝐺 𝑧 ) ) |
34 |
33
|
eqeq2d |
⊢ ( 𝑦 = 𝑔 → ( 𝑓 = ( 𝑦 𝐺 𝑧 ) ↔ 𝑓 = ( 𝑔 𝐺 𝑧 ) ) ) |
35 |
|
oveq2 |
⊢ ( 𝑧 = ℎ → ( 𝑔 𝐺 𝑧 ) = ( 𝑔 𝐺 ℎ ) ) |
36 |
35
|
eqeq2d |
⊢ ( 𝑧 = ℎ → ( 𝑓 = ( 𝑔 𝐺 𝑧 ) ↔ 𝑓 = ( 𝑔 𝐺 ℎ ) ) ) |
37 |
34 36
|
cbvrex2vw |
⊢ ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑓 = ( 𝑦 𝐺 𝑧 ) ↔ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝑓 = ( 𝑔 𝐺 ℎ ) ) |
38 |
32 37
|
bitrdi |
⊢ ( 𝑥 = 𝑓 → ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 𝐺 𝑧 ) ↔ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝑓 = ( 𝑔 𝐺 ℎ ) ) ) |
39 |
38
|
cbvabv |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 𝐺 𝑧 ) } = { 𝑓 ∣ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝑓 = ( 𝑔 𝐺 ℎ ) } |
40 |
30 39
|
eqtrdi |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 𝐹 𝐵 ) = { 𝑓 ∣ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝑓 = ( 𝑔 𝐺 ℎ ) } ) |